Questions tagged [equivalence]

An equivalence study is designed to test whether one treatment is nearly equal, or 'equivalent' to another.

Equivalence studies are common in, but not limited to, drug trials. They amount to an inversion of the typical Neyman-Pearson hypothesis testing approach, in that the researcher is trying to provide evidence against a null hypothesis that two groups differ by at least some amount:

H$^{-}_0\text{: }|\theta|\ge\Delta$

H$^{-}_\text{A}\text{: }-\Delta< \theta < \Delta$

Such "negativist" null hypotheses can also easily extend to asymmetric equivalence intervals:

H$^{-}_0\text{: }\theta\leq\Delta_2$ OR $\theta \ge \Delta_{1}$

H$^{-}_\text{A}\text{: }\Delta_{2}< \theta < \Delta_{1}$

Because it is impossible to prove that an estimated parameter is equal to any point value, it can only be shown that the parameter appears to fall within an acceptably narrow range that covers perfect equality. A frequent approch to testing for equivalence is by using two one-sided tests.

154 questions
54
votes
4 answers

Why do statisticians say a non-significant result means "you can't reject the null" as opposed to accepting the null hypothesis?

Traditional statistical tests, like the two sample t-test, focus on trying to eliminate the hypothesis that there is no difference between a function of two independent samples. Then, we choose a confidence level and say that if the difference of…
41
votes
8 answers

How to test hypothesis of no group differences?

Imagine you have a study with two groups (e.g., males and females) looking at a numeric dependent variable (e.g., intelligence test scores) and you have the hypothesis that there are no group differences. Question: What is a good way to test…
Jeromy Anglim
  • 42,044
  • 23
  • 146
  • 250
38
votes
8 answers

Is it possible to prove a null hypothesis?

As the question states - Is it possible to prove the null hypothesis? From my (limited) understanding of hypothesis, the answer is no but I can't come up with a rigorous explanation for it. Does the question have a definitive answer?
Pulkit Sinha
  • 491
  • 1
  • 4
  • 6
13
votes
2 answers

Is there a simple equivalence test version of the Kolmogorov–Smirnov test?

Has two one-sided tests for equivalence (TOST) been framed for the Kolmogorov–Smirnov test to test the negativist null hypothesis that two distributions differ by at least some researcher-specified level? If not TOST, then some other form of…
Alexis
  • 26,219
  • 5
  • 78
  • 131
13
votes
1 answer

Quantile regression estimator formula

I have seen two different representations of the quantile regression estimator which are $$Q(\beta_{q}) = \sum^{n}_{i:y_{i}\geq x'_{i}\beta} q\mid y_i - x'_i \beta_q \mid + \sum^{n}_{i:y_{i}< x'_{i}\beta} (1-q)\mid y_i - x'_i \beta_q…
AlexH
  • 946
  • 1
  • 9
  • 18
13
votes
1 answer

When we compare groups on control variables should we be using tests of equivalence?

In many papers that consider treatments and outcomes, I see tables (usually "table 1") of what might be called nuisance variables (often demographics, sometimes medical conditions) with tests of significance and text such as "the groups were broadly…
Peter Flom
  • 94,055
  • 35
  • 143
  • 276
12
votes
1 answer

Null hypothesis of equivalence

Suppose $X_1, X_2, \, ... \, , X_n$ are a simple random sample from a Normal$(\mu,\sigma^2)$ distribution. I'm interested in doing the following hypothesis test: $$ H_0: | \mu| \le c \\ H_1: |\mu| > c, $$ for a given constant $c > 0$. I was thinking…
Vic101
  • 121
  • 3
12
votes
3 answers

"Reversed" Shapiro–Wilk

The Sharipo-Wilk test, according to wikipedia, tests the null-hypothesis ($H_0$) "The population is normally distributed". I am looking for a similar normality test with $H_0$ "The population is not normally distributed". Having such a test, I want…
11
votes
1 answer

If we shouldn't do post hoc power calculations, are post hoc effect size calculations also invalid?

We have posts on here discussing why post hoc power calculations are flawed. What about post hoc calculations of the effect size that we could catch? That seems logically equivalent. If we are not supposed to calculate the power to detect an effect…
Dave
  • 28,473
  • 4
  • 52
  • 104
9
votes
1 answer

Intuitive explanation of differences between TOST and UMP tests for equivalence

Hypothesis tests for equivalence differ from the more common hypothesis tests for difference. In tests for difference, the null hypothesis is some form of "separate quantities are the same", and extreme enough evidence prompts rejection in favor of…
Alexis
  • 26,219
  • 5
  • 78
  • 131
9
votes
1 answer

Hypothesis testing for equality of proportions with 3 samples

I have a data set of cell phone customer information data with twocolumns. The first column contains the certain category that an account falls in (either A, B or C) and second column contains is binary valued for whether that account has…
user1893354
  • 1,435
  • 4
  • 15
  • 25
9
votes
3 answers

Equivalence tests for non-normal data?

I have some data that I can't necessarily assume to be drawn from normal distributions, and I would like to conduct tests of equivalence between groups. For normal data, there are techniques like TOST (two one-sided t-tests). Is there anything…
9
votes
2 answers

Equivalence testing - tost method - why CI of 90%?

In testing for equivalence via the two one-sided test approach with confidence intervals, a (1–2α) × 100% confidence interval is calculated to check for equivalence. I assume this is because you calculate a CI for mean of group a and mean of group…
00schneider
  • 1,202
  • 1
  • 14
  • 26
8
votes
6 answers

Is there a test that uses $|{\mu_A}-{\mu_B}|\le \delta $ as the null hypothesis?

In the usual t-test, the null hypothesis is that "the difference between the means of the two groups is zero". My Question: Is there a test that uses "the difference between the means of the two groups is less than a certain value" as the null…
Blue Various
  • 269
  • 2
  • 7
8
votes
1 answer

Can you use the Kolmogorov-Smirnov test to directly test for equivalence of two distributions?

There has been talk on other questions of how one might use the Two One-Sided Tests (TOST) approach for the Kolmogorov-Smirnov (KS) test, but I was wondering whether it was possible to directly use the test statistic to show that two distributions…
1
2 3
10 11