I use a Tobit model to predict censored data. I use the AER
package in R.
A toy example looks as follows:
library(AER)
N = 10
f = rep(c("s1","s2","s3","s4","s5","s6","s7","s8"),N)
fcoeff = rep(c(-1,-2,-3,-4,-3,-5,-10,-5),N)
set.seed(100)
x = rnorm(8*N)+1
beta = 5
epsilon = rnorm(8*N,sd = sqrt(1/5))
y.star = x*beta+fcoeff+epsilon ## latent response
y = y.star
y[y<0]<-0 ## censored response
my.data = data.frame(x,f)
fit <- tobit(y~0+x+f,data=my.data)
my.range = range(y,y.star,predict(fit))
plot(y,ylim = my.range)
lines( ifelse(predict(fit)>0,predict(fit),0),col="red")
The values returned by predict(fit)
give me the expected value under the model. How can I derive a e.g. 90% confidence interval around this expected value?