I have run LMM models with different reference categories and this yield different results:
> summary(lmer3)
Linear mixed model fit by maximum likelihood ['merModLmerTest']
Formula: v000001 ~ (1 | item) + (1 + color | speaker) + Language * color * sex
Data: data1.frame
AIC BIC logLik deviance
16279.975 16377.355 -8119.988 16239.975
Random effects:
Groups Name Variance Std.Dev. Corr
speaker (Intercept) 8.904e+05 9.436e+02
colorblue 1.821e+05 4.267e+02 -0.35
colorred 3.428e+05 5.855e+02 -0.44 1.00
item (Intercept) 9.502e-06 3.083e-03
Residual 1.067e+06 1.033e+03
Number of obs: 962, groups: speaker, 53; item, 10
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 10664.67 318.69 38.45 33.464 <2e-16
Languagel2_like 391.48 421.40 42.13 0.917 0.3642
colorblue -179.31 211.02 44.50 -0.850 0.4000
colorred 116.96 241.44 36.27 0.484 0.6310
sexmale -168.01 450.11 38.26 -0.373 0.7110
Languagel2_like:colorblue 758.22 301.01 54.20 2.519 0.0147
Languagel2_like:colorred 463.37 344.01 45.73 1.344 0.1857
Languagel2_like:sexmale -811.49 607.85 43.49 -1.326 0.1917
colorblue:sexmale 342.76 294.97 42.57 1.162 0.2517
colorred:sexmale 13.25 337.44 34.81 0.039 0.9689
Languagel2_like:colorblue:sexmale -721.37 438.78 54.19 -1.644 0.1059
Languagel2_like:colorred:sexmale -605.76 497.75 45.29 -1.216 0.2304
(Intercept) ***
Languagel2_like
colorblue
colorred
sexmale
Languagel2_like:colorblue *
Languagel2_like:colorred
Languagel2_like:sexmale
colorblue:sexmale
colorred:sexmale
Languagel2_like:colorblue:sexmale
Languagel2_like:colorred:sexmale
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
And this is the second model:
> summary(lmer43)
Linear mixed model fit by maximum likelihood ['merModLmerTest']
Formula: v000001 ~ (1 | item) + (1 + color3 | speaker) + Language * color3 * sex
Data: data1.frame
AIC BIC logLik deviance
16279.975 16377.355 -8119.988 16239.975
Random effects:
Groups Name Variance Std.Dev. Corr
speaker (Intercept) 7.945e+05 8.913e+02
color3white 1.821e+05 4.268e+02 -0.11
color3red 2.761e+04 1.661e+02 -0.24 -0.94
item (Intercept) 4.961e-06 2.227e-03
Residual 1.067e+06 1.033e+03
Number of obs: 962, groups: speaker, 53; item, 10
Fixed effects:
Estimate Std. Error df t value
(Intercept) 10485.36 305.33 39.57 34.341
Languagel2_like 1149.70 399.61 43.91 2.871
color3white 179.31 211.03 44.50 0.850
color3red 296.27 167.08 125.59 1.773
sexmale 174.75 430.05 38.94 0.406
Languagel2_like:color3white -758.22 301.01 54.10 -2.519
Languagel2_like:color3red -294.85 244.46 159.09 -1.206
Languagel2_like:sexmale -1532.85 577.70 44.74 -2.648
color3white:sexmale -342.76 294.98 42.57 -1.162
color3red:sexmale -329.51 228.57 113.99 -1.442
Languagel2_like:color3white:sexmale 721.36 438.78 54.10 1.644
Languagel2_like:color3red:sexmale 115.61 351.65 162.98 0.329
Pr(>|t|)
(Intercept) < 2e-16 ***
Languagel2_like 0.00627 **
color3white 0.40004
color3red 0.07862 .
sexmale 0.68671
Languagel2_like:color3white 0.01477 *
Languagel2_like:color3red 0.22953
Languagel2_like:sexmale 0.01114 *
color3white:sexmale 0.25171
color3red:sexmale 0.15215
Languagel2_like:color3white:sexmale 0.10602
Languagel2_like:color3red:sexmale 0.74275
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Is it possible to report results from two models? (I know that very little of people would do this but these two models give different pictures). What should I do? Which one should I believe?