I would like to check my understanding of the Chow Forecast test.The test is used to perform a test on the following models: $y_1=\beta X+\epsilon_1$ and $y_2=\beta X+ \nu + \epsilon_2$, with $H_0:\nu=0$ and $H_1: \nu\neq 0$.
Now I wonder whether that means that the following holds true: \begin{align*} F&=\frac{(e_R'e_R-e_1'e_1)/g}{e_1'e_1/(n-k)}\\ &=\frac{\left(\sum\limits_{i=1}^{n+g} (y_i-x_i'\beta)^2-\sum\limits_{i=1}^n (y_i-x_i'\beta)^2 \right)/g}{\sum\limits_{i=1}^n (y_i-x_i'\beta)/(n-k)}\\ &=\frac{\sum\limits_{i=n}^{n+g} (y_i-x_i'\beta)^2/g}{\sum\limits_{i=1}^n (y_i-x_i'\beta)/(n-k)} \end{align*}
Are these true, and if not, why not?