I just did a binary linear regression in R with a dataset that has 100000 lines. The output of the regression is, that almost every parameter is highly significant. I wouldn't expect that when I look at the boxplots. Did I do something wrong in my code or can that be right?
Call:
glm(formula = damage ~ dist_gerst + dist_gew + dist_hunt + dist_kart +
dist_mais + dist_raps + dist_road1 + dist_road2 + dist_road3 +
dist_road4 + dist_roada + dist_rog + dist_rmr + dist_ruben +
dist_sg + dist_wald + dist_hecke + dist_weize + dist_wg +
dist_bra, family = binomial(logit), data = data)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.3963 -0.0024 0.2446 0.4947 5.1474
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.7073574 0.5951280 -16.311 < 2e-16 ***
dist_gerst 0.0355374 0.0053699 6.618 3.65e-11 ***
dist_gew 0.0033584 0.0012147 2.765 0.005698 **
dist_hunt 0.0531545 0.0017567 30.259 < 2e-16 ***
dist_kart 0.0472300 0.0022333 21.148 < 2e-16 ***
dist_mais 0.0578135 0.0031780 18.192 < 2e-16 ***
dist_raps 0.0470257 0.0021689 21.682 < 2e-16 ***
dist_road1 -0.0135003 0.0023328 -5.787 7.15e-09 ***
dist_road2 0.0304884 0.0016027 19.023 < 2e-16 ***
dist_road3 -0.0003806 0.0011631 -0.327 0.743505
dist_road4 -0.0515227 0.0048316 -10.664 < 2e-16 ***
dist_roada -0.0186244 0.0050640 -3.678 0.000235 ***
dist_rog -0.0403263 0.0031825 -12.671 < 2e-16 ***
dist_rmr -0.1133255 0.0045872 -24.705 < 2e-16 ***
dist_ruben 0.1168154 0.0032703 35.721 < 2e-16 ***
dist_sg -0.0450639 0.0020300 -22.199 < 2e-16 ***
dist_wald 0.1127090 0.0035169 32.047 < 2e-16 ***
dist_hecke 0.1065537 0.0028434 37.474 < 2e-16 ***
dist_weize -0.1496686 0.0038303 -39.075 < 2e-16 ***
dist_wg -0.0937316 0.0051061 -18.357 < 2e-16 ***
dist_bra -0.0599667 0.0023916 -25.074 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 64559 on 53510 degrees of freedom
Residual deviance: 32357 on 53490 degrees of freedom
(46231 observations deleted due to missingness)
AIC: 32399
Number of Fisher Scoring iterations: 9