I'm creating a calibration plot for my breast cancer prognostic Cox model, which doesn't include any fancy transformations, using the calibrate()
function in the rms
package for R
. Should I use the hare
method or KM
? Similar literature to what I'm doing always uses the KM
method, but I'm curious if hare
is more advantageous.
There are 3 options I have: use the KM
method, use the hare
method, or plot both hare
and KM
on one figure.
Here's sample code:
library(rms)
library(survival)
library(mice)
remove(veteran)
data(veteran)
veteran$trt=factor(veteran$trt,levels=c(1,2))
veteran$prior=factor(veteran$prior,levels=c(0,10))
survmod=with(veteran,Surv(time,status))
fit=cph(survmod~celltype+karno,data=veteran,surv=TRUE,u=100,x=T,y=T)
cal.KM <- calibrate(fit, u=100, cmethod='KM', m=20, B=20)
cal.hare=calibrate(fit,u=100,cmethod='hare',B=20)
plot(cal.hare)
plot(cal.KM,add=TRUE)
Thank you for your help!