I am looking at a time series which has no obvious trend, but seems to have an intercept a little above zero. The results I get for ur.df
function in R is the following:
logprice_df <- ur.df(test3, lags = 1, type= 'trend')
summary(logprice_df)
###############################################
# Augmented Dickey-Fuller Test Unit Root Test #
###############################################
Test regression trend
Call:
lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
Residuals:
Min 1Q Median 3Q Max
-0.50614 -0.04394 0.00134 0.03859 0.64408
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.841e-02 8.268e-03 2.226 0.02626 *
z.lag.1 -1.573e-02 5.635e-03 -2.791 0.00537 **
tt 9.234e-06 1.080e-05 0.855 0.39272
z.diff.lag 1.411e-01 3.364e-02 4.195 3.01e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.07512 on 865 degrees of freedom
Multiple R-squared: 0.02651, Adjusted R-squared: 0.02314
F-statistic: 7.852 on 3 and 865 DF, p-value: 3.572e-05
Value of test-statistic is: -2.791 2.6012 3.8997
Critical values for test statistics:
1pct 5pct 10pct
tau3 -3.96 -3.41 -3.12
phi2 6.09 4.68 4.03
phi3 8.27 6.25 5.34
The problem is that I do not understand how one shall interpret these values. What is F-statistic
? And what is the probabilities below Pr(>|t|)
in the first table, and also Value of test-statistic
?
I really appreciate any help.