1

I'm currently working on a project where my model is a GLM with a beta distribution. The dependent variable is bimodal. I've done this before, in Stata, but I'm having some difficulty interpreting what R has put out. I ran the model using the VGLM command from the VGAM package. For some reason, it has produced two coefficient for each variable. This is the part that confuses me--I'm not sure how to interpret this, and I haven't been able to find any help so far. My key variable of interest is logoil_gas_valuePOP_1. Any help here would be extremely appreciated--consulting my stats teacher produced nothing.

Pearson Residuals:
                                   Min       1Q   Median      3Q     Max
elogit(mu, min = 0, max = 12)  -6.4754 -0.34561 0.048202 0.42250 6.32340
log(phi)                      -23.6802  0.32592 0.592333 0.68735 0.73015

Coefficients:
                          Estimate      Std. Error    z value
(Intercept):1            -0.2731986  /  0.0513944  /  -5.315728
(Intercept):2             0.9116027  /  0.1266222  /   7.199393
polity_5:1                0.1267469  /  0.0016007  /  79.180001
polity_5:2                0.0481726  /  0.0037464  /  12.858440
logGDP_cap2000_sup_1:1    0.0945281  /  0.0067247  /  14.056858
logGDP_cap2000_sup_1:2    0.3542733  /  0.0170221  /  20.812500
logoil_gas_valuePOP_1:1  -0.0330833  /  0.0035020  /  -9.447096
logoil_gas_valuePOP_1:2  -0.0082593  /  0.0094502  /  -0.873979

Number of linear predictors:  2 
Names of linear predictors: elogit(mu, min = 0, max = 12), log(phi)
Dispersion Parameter for betaff family:   1
Log-likelihood: -8592.995 on 10366 degrees of freedom
Number of iterations: 25

Here is the code:

library("foreign")
rossdatahw <- read.dta("c:/Users/Amanda/Desktop/PS 531/Ross Replication/rossdata1.dta")
library(mosaic)
library("VGAM")
rossdatahw$polity01 <- with(rossdatahw,polity/10)
cor(rossdatahw[,c("polity","polity01")], use="complete.obs")
rossdatahw$polity1to11 <- rossdatahw$polity+1

bootrossyears <- resample(rossdatahw, within=rossdatahw$year, size=1000, replace=TRUE)

bdata <- bootrossyears

fit1 <- vglm(polity1to11~polity_5 + logGDP_cap2000_sup_1 +
                         logoil_gas_valuePOP_1 + latin + latin_logoil_1 + latin +
                         dem_prior_update + gdpgrowth_alt_new_1 + mus_pct_sup +
                         YEAR1960_64 + YEAR1965_69 + YEAR1970_74 + YEAR1975_79 +
                         YEAR1980_84 + YEAR1985_89 + YEAR1990_94 + YEAR1995_99,
             data=rossdatahw[!is.na(rossdatahw$polity01),],
             na.action=na.omit,
             family=betaff(A=0,B=12,lmu = elogit(min = 0, max = 12)),
             ##family=beta.ab(A=0, B=12),
             trace=TRUE)

coef(fit1, matrix=TRUE)
coef(fit1)
summary(fit1)
gung - Reinstate Monica
  • 132,789
  • 81
  • 357
  • 650
A. Burke
  • 11
  • 2

0 Answers0