From the document and help, probit model is supported by mlogit. But when I tried it with these R scripts, the estimation takes much longer time to run (than the logit verion) and the result is quite a bit different as well (argument probit=FALSE). Does the probit behave correctly? If so, how should I interpret the er.gc, er.gr, etc coefficients?
> require(mlogit)
> data(Heating)
> H <- mlogit.data(Heating, shape="wide", choice="depvar", varying=c(3:12))
> m1.probit = mlogit(depvar~ic+oc, H, probit=TRUE)
> summary(m1.probit)
Call:
mlogit(formula = depvar ~ ic + oc, data = H, probit = TRUE)
Frequencies of alternatives:
ec er gc gr hp
0.071111 0.093333 0.636667 0.143333 0.055556
bfgs method
37 iterations, 0h:4m:54s
g'(-H)^-1g = 0.011
last step couldn't find higher value
Coefficients :
Estimate Std. Error t-value Pr(>|t|)
er:(intercept) 2.5611e-01 3.6641e-01 0.6990 0.48457
gc:(intercept) -2.6944e-02 3.3211e-01 -0.0811 0.93534
gr:(intercept) -1.8439e+01 3.2798e+01 -0.5622 0.57398
hp:(intercept) -6.4231e-01 7.4214e-01 -0.8655 0.38677
ic -1.1447e-03 5.3175e-04 -2.1528 0.03133 *
oc -3.3779e-03 1.4011e-03 -2.4109 0.01591 *
er.gc 4.4987e-01 2.6880e-01 1.6736 0.09421 .
er.gr 5.8580e+00 1.1236e+01 0.5214 0.60212
er.hp 1.2613e+00 5.0231e-01 2.5109 0.01204 *
gc.gc 7.1013e-01 3.5489e-01 2.0010 0.04540 *
gc.gr -8.4606e+00 1.6848e+01 -0.5022 0.61555
gc.hp 6.7245e-01 6.1475e-01 1.0939 0.27401
gr.gr 1.4085e+01 2.6034e+01 0.5410 0.58849
gr.hp 4.9476e-01 4.4568e-01 1.1101 0.26694
hp.hp 2.2620e-01 2.9062e-01 0.7783 0.43637
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log-Likelihood: -1000.1
McFadden R^2: 0.021626
Likelihood ratio test : chisq = 44.213 (p.value = 1.4049e-05)
> m1.logit = mlogit(depvar~ic+oc, H, probit=FALSE)
> summary(m1.logit)
Call:
mlogit(formula = depvar ~ ic + oc, data = H, probit = FALSE,
method = "nr", print.level = 0)
Frequencies of alternatives:
ec er gc gr hp
0.071111 0.093333 0.636667 0.143333 0.055556
nr method
6 iterations, 0h:0m:0s
g'(-H)^-1g = 9.58E-06
successive function values within tolerance limits
Coefficients :
Estimate Std. Error t-value Pr(>|t|)
er:(intercept) 0.19459102 0.20424212 0.9527 0.3407184
gc:(intercept) 0.05213336 0.46598878 0.1119 0.9109210
gr:(intercept) -1.35058266 0.50715442 -2.6631 0.0077434 **
hp:(intercept) -1.65884594 0.44841936 -3.6993 0.0002162 ***
ic -0.00153315 0.00062086 -2.4694 0.0135333 *
oc -0.00699637 0.00155408 -4.5019 6.734e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Log-Likelihood: -1008.2
McFadden R^2: 0.013691
Likelihood ratio test : chisq = 27.99 (p.value = 8.3572e-07)