0

I know this is quite a basic question and I've checked some related posts on stackoverflow after looking for tutorials/articles explaining what I'm looking for, but so far I did not really get all my points answered.

I did field measurements of different ecological response variables and now have to identify the factors which have a significant influence. For example, I measured bait consumption by soil fauna. I did this on a total of 24 plots (2 regions * 2 elevation levels * 2 expositions (North/South) * 3 plot replicates). Apart from these factors (region/elevation/exposition), I measured some soil properties and extracted climate data from an already existing grid. To reduce the complexity of my soil and climate data, I've done a co-inertia analysis, telling me that soil & climate data do not seem to be significantly correlated. I thus did each a PCA for my soil and my climate data & extracted the first 2 dimensions.

Now, as the residuals of my bait consumption data are not normally distributed, I'm doing a GLM (for other analysis where ND is not violated, I'll do ANOVAs). However, I get myself kind of lost in the process of comparing different GLMs and choosing the most appropriate one.

I started off as follows:

baits.glm0 <- glm(consumption ~ 1, data = baits.stick.means, 
              family = poisson)
baits.glm1 <- glm(consumption ~ region + exposition + 
                  elevation_level, data = baits.stick.means, 
                  family = poisson)
anova(baits.glm0, baits.glm1, test = "Chisq")

This tells me that including above factors indeed helps in explaining consumption, right. But: how do I continue in adding the other factors (climate_pca1/climate_pca2, soil_pca1/soil_pca2)? I mean there are many different possibilities which factors I add first, which I leave out, do I allow for interactions between e.g. region and exposition, etc ... I can't simply construct different models and look at their AIC, since I get "Inf" for latter, due to the number of factor levels I assume.

So, how would the correct procedure/comparison method be in this case?

Data subset in case it is helpful:

structure(list(stick_number = c(219L, 284L, 62L, 254L, 233L, 
187L, 157L, 339L, 57L, 39L, 347L, 340L, 77L, 191L, 321L, 218L, 
82L, 153L, 334L, 230L, 194L, 358L, 336L, 78L, 121L, 210L, 224L, 
322L, 239L, 83L, 344L, 117L, 204L, 182L, 236L, 306L, 42L, 5L, 
112L, 92L, 225L, 32L, 50L, 328L, 359L, 151L, 71L, 30L, 162L, 
13L, 111L, 104L, 206L, 296L, 173L, 283L, 228L, 293L, 86L, 256L, 
186L, 241L, 264L, 222L, 287L, 143L, 342L, 158L, 266L, 68L, 118L, 
156L, 277L, 12L, 8L, 281L, 172L, 259L, 127L, 267L, 6L, 81L, 341L, 
327L, 51L, 53L, 31L, 60L, 89L, 308L, 352L, 134L, 64L, 310L, 67L, 
302L, 74L, 141L, 268L, 276L), plot_id = c("VSH3", "TSH1", "VNM2", 
"VNH2", "VNH1", "VSH1", "TNM2", "TNH2", "VNM1", "VSM3", "TNH3", 
"TNH2", "VNM3", "VSH1", "TNH1", "VSH3", "VNM3", "TNM2", "TNH2", 
"VNH1", "VSH1", "TNH3", "TNH2", "VNM3", "TSM3", "VSH2", "VSH3", 
"TNH1", "VNH1", "VNM3", "TNH2", "TSM2", "VSH2", "VSH1", "VNH1", 
"TSH3", "VSM3", "VSM1", "TSM2", "TSM1", "VSH3", "VSM3", "VNM1", 
"TNH1", "TNH3", "TNM2", "VNM2", "VSM2", "TNM2", "VSM1", "TSM2", 
"TSM1", "VSH2", "TSH2", "TNM3", "TSH1", "VNH1", "TSH2", "VNM3", 
"VNH3", "VSH1", "VNH2", "VNH3", "VSH3", "TSH2", "TNM1", "TNH2", 
"TNM2", "VNH3", "VNM2", "TSM2", "TNM2", "TSH1", "VSM1", "VSM1", 
"TSH1", "TNM3", "VNH3", "TSM3", "VNH3", "VSM1", "VNM3", "TNH2", 
"TNH1", "VNM1", "VNM1", "VSM3", "VNM1", "VNM3", "TSH3", "TNH3", 
"TSM3", "VNM2", "TSH3", "VNM2", "TSH3", "VNM2", "TNM1", "VNH3", 
"TSH1"), site = c("VSH", "TSH", "VNM", "VNH", "VNH", "VSH", "TNM", 
"TNH", "VNM", "VSM", "TNH", "TNH", "VNM", "VSH", "TNH", "VSH", 
"VNM", "TNM", "TNH", "VNH", "VSH", "TNH", "TNH", "VNM", "TSM", 
"VSH", "VSH", "TNH", "VNH", "VNM", "TNH", "TSM", "VSH", "VSH", 
"VNH", "TSH", "VSM", "VSM", "TSM", "TSM", "VSH", "VSM", "VNM", 
"TNH", "TNH", "TNM", "VNM", "VSM", "TNM", "VSM", "TSM", "TSM", 
"VSH", "TSH", "TNM", "TSH", "VNH", "TSH", "VNM", "VNH", "VSH", 
"VNH", "VNH", "VSH", "TSH", "TNM", "TNH", "TNM", "VNH", "VNM", 
"TSM", "TNM", "TSH", "VSM", "VSM", "TSH", "TNM", "VNH", "TSM", 
"VNH", "VSM", "VNM", "TNH", "TNH", "VNM", "VNM", "VSM", "VNM", 
"VNM", "TSH", "TNH", "TSM", "VNM", "TSH", "VNM", "TSH", "VNM", 
"TNM", "VNH", "TSH"), region = c("valais", "ticino", "valais", 
"valais", "valais", "valais", "ticino", "ticino", "valais", "valais", 
"ticino", "ticino", "valais", "valais", "ticino", "valais", "valais", 
"ticino", "ticino", "valais", "valais", "ticino", "ticino", "valais", 
"ticino", "valais", "valais", "ticino", "valais", "valais", "ticino", 
"ticino", "valais", "valais", "valais", "ticino", "valais", "valais", 
"ticino", "ticino", "valais", "valais", "valais", "ticino", "ticino", 
"ticino", "valais", "valais", "ticino", "valais", "ticino", "ticino", 
"valais", "ticino", "ticino", "ticino", "valais", "ticino", "valais", 
"valais", "valais", "valais", "valais", "valais", "ticino", "ticino", 
"ticino", "ticino", "valais", "valais", "ticino", "ticino", "ticino", 
"valais", "valais", "ticino", "ticino", "valais", "ticino", "valais", 
"valais", "valais", "ticino", "ticino", "valais", "valais", "valais", 
"valais", "valais", "ticino", "ticino", "ticino", "valais", "ticino", 
"valais", "ticino", "valais", "ticino", "valais", "ticino"), 
    exposition = c("south", "south", "north", "north", "north", 
    "south", "north", "north", "north", "south", "north", "north", 
    "north", "south", "north", "south", "north", "north", "north", 
    "north", "south", "north", "north", "north", "south", "south", 
    "south", "north", "north", "north", "north", "south", "south", 
    "south", "north", "south", "south", "south", "south", "south", 
    "south", "south", "north", "north", "north", "north", "north", 
    "south", "north", "south", "south", "south", "south", "south", 
    "north", "south", "north", "south", "north", "north", "south", 
    "north", "north", "south", "south", "north", "north", "north", 
    "north", "north", "south", "north", "south", "south", "south", 
    "south", "north", "north", "south", "north", "south", "north", 
    "north", "north", "north", "north", "south", "north", "north", 
    "south", "north", "south", "north", "south", "north", "south", 
    "north", "north", "north", "south"), elevation_level = c("high", 
    "high", "mid", "high", "high", "high", "mid", "high", "mid", 
    "mid", "high", "high", "mid", "high", "high", "high", "mid", 
    "mid", "high", "high", "high", "high", "high", "mid", "mid", 
    "high", "high", "high", "high", "mid", "high", "mid", "high", 
    "high", "high", "high", "mid", "mid", "mid", "mid", "high", 
    "mid", "mid", "high", "high", "mid", "mid", "mid", "mid", 
    "mid", "mid", "mid", "high", "high", "mid", "high", "high", 
    "high", "mid", "high", "high", "high", "high", "high", "high", 
    "mid", "high", "mid", "high", "mid", "mid", "mid", "high", 
    "mid", "mid", "high", "mid", "high", "mid", "high", "mid", 
    "mid", "high", "high", "mid", "mid", "mid", "mid", "mid", 
    "high", "high", "mid", "mid", "high", "mid", "high", "mid", 
    "mid", "high", "high"), climate_pca1 = c(-1.480220428, -1.828098745, 
    1.770907449, -1.209471355, -1.262109584, -1.575038041, 1.10552354, 
    -2.332118439, 1.922660686, 2.133086246, -2.251591285, -2.332118439, 
    1.843690586, -1.575038041, -2.593633876, -1.480220428, 1.843690586, 
    1.10552354, -2.332118439, -1.262109584, -1.575038041, -2.251591285, 
    -2.332118439, 1.843690586, 2.081946695, -1.354302896, -1.480220428, 
    -2.593633876, -1.262109584, 1.843690586, -2.332118439, 1.88376908, 
    -1.354302896, -1.575038041, -1.262109584, -2.026443343, 2.133086246, 
    2.129010846, 1.88376908, 1.744163466, -1.480220428, 2.133086246, 
    1.922660686, -2.593633876, -2.251591285, 1.10552354, 1.770907449, 
    2.333468357, 1.10552354, 2.129010846, 1.88376908, 1.744163466, 
    -1.354302896, -1.916565298, 1.208123392, -1.828098745, -1.262109584, 
    -1.916565298, 1.843690586, -1.027990027, -1.575038041, -1.209471355, 
    -1.027990027, -1.480220428, -1.916565298, 0.701232975, -2.332118439, 
    1.10552354, -1.027990027, 1.770907449, 1.88376908, 1.10552354, 
    -1.828098745, 2.129010846, 2.129010846, -1.828098745, 1.208123392, 
    -1.027990027, 2.081946695, -1.027990027, 2.129010846, 1.843690586, 
    -2.332118439, -2.593633876, 1.922660686, 1.922660686, 2.133086246, 
    1.922660686, 1.843690586, -2.026443343, -2.251591285, 2.081946695, 
    1.770907449, -2.026443343, 1.770907449, -2.026443343, 1.770907449, 
    0.701232975, -1.027990027, -1.828098745), climate_pca2 = c(-1.923853312, 
    -0.509591235, 0.295280113, 0.197102242, -0.42062989, -1.849214144, 
    2.728812267, 1.351144076, -0.274402516, -1.379004788, 0.77931106, 
    1.351144076, -0.273885517, -1.849214144, 2.40580586, -1.923853312, 
    -0.273885517, 2.728812267, 1.351144076, -0.42062989, -1.849214144, 
    0.77931106, 1.351144076, -0.273885517, -0.018829514, -1.687742087, 
    -1.923853312, 2.40580586, -0.42062989, -0.273885517, 1.351144076, 
    0.016797936, -1.687742087, -1.849214144, -0.42062989, -0.733165106, 
    -1.379004788, -1.358442237, 0.016797936, 0.059349245, -1.923853312, 
    -1.379004788, -0.274402516, 2.40580586, 0.77931106, 2.728812267, 
    0.295280113, -1.376450585, 2.728812267, -1.358442237, 0.016797936, 
    0.059349245, -1.687742087, -0.595492434, 2.621840242, -0.509591235, 
    -0.42062989, -0.595492434, -0.273885517, -0.670404999, -1.849214144, 
    0.197102242, -0.670404999, -1.923853312, -0.595492434, 2.615665322, 
    1.351144076, 2.728812267, -0.670404999, 0.295280113, 0.016797936, 
    2.728812267, -0.509591235, -1.358442237, -1.358442237, -0.509591235, 
    2.621840242, -0.670404999, -0.018829514, -0.670404999, -1.358442237, 
    -0.273885517, 1.351144076, 2.40580586, -0.274402516, -0.274402516, 
    -1.379004788, -0.274402516, -0.273885517, -0.733165106, 0.77931106, 
    -0.018829514, 0.295280113, -0.733165106, 0.295280113, -0.733165106, 
    0.295280113, 2.615665322, -0.670404999, -0.509591235), soil_pca1 = c(-5.56767863419797, 
    1.95393811095034, -0.260227094874325, -1.61085398656141, 
    -1.66958542579672, -0.397280823855903, 3.7169854524207, 1.84352513299293, 
    -0.6551280697025, -6.50320343705425, 2.00291533466174, 1.84352513299293, 
    -0.620445610945974, -0.397280823855903, 2.42091640839051, 
    -5.56767863419797, -0.620445610945974, 3.7169854524207, 1.84352513299293, 
    -1.66958542579672, -0.397280823855903, 2.00291533466174, 
    1.84352513299293, -0.620445610945974, 0.304033246117126, 
    -0.84551981325722, -5.56767863419797, 2.42091640839051, -1.66958542579672, 
    -0.620445610945974, 1.84352513299293, 0.859821441854325, 
    -0.84551981325722, -0.397280823855903, -1.66958542579672, 
    2.52191101044192, -6.50320343705425, -4.58332766496856, 0.859821441854325, 
    1.81674404592665, -5.56767863419797, -6.50320343705425, -0.6551280697025, 
    2.42091640839051, 2.00291533466174, 3.7169854524207, -0.260227094874325, 
    -3.61912580538706, 3.7169854524207, -4.58332766496856, 0.859821441854325, 
    1.81674404592665, -0.84551981325722, 2.72504002601633, 2.85277767098365, 
    1.95393811095034, -1.66958542579672, 2.72504002601633, -0.620445610945974, 
    -0.76015927833061, -0.397280823855903, -1.61085398656141, 
    -0.76015927833061, -5.56767863419797, 2.72504002601633, 4.07392776417628, 
    1.84352513299293, 3.7169854524207, -0.76015927833061, -0.260227094874325, 
    0.859821441854325, 3.7169854524207, 1.95393811095034, -4.58332766496856, 
    -4.58332766496856, 1.95393811095034, 2.85277767098365, -0.76015927833061, 
    0.304033246117126, -0.76015927833061, -4.58332766496856, 
    -0.620445610945974, 1.84352513299293, 2.42091640839051, -0.6551280697025, 
    -0.6551280697025, -6.50320343705425, -0.6551280697025, -0.620445610945974, 
    2.52191101044192, 2.00291533466174, 0.304033246117126, -0.260227094874325, 
    2.52191101044192, -0.260227094874325, 2.52191101044192, -0.260227094874325, 
    4.07392776417628, -0.76015927833061, 1.95393811095034), soil_pca2 = c(-1.20094768276013, 
    -0.81049387016335, 2.4943393252285, 1.57423563197107, 1.44861597315028, 
    2.2610844297929, -0.297648866553386, -2.38340996245776, 2.40878156685994, 
    -2.3823643056849, -2.6231255135526, -2.38340996245776, 2.23860580682454, 
    2.2610844297929, -1.9422384338934, -1.20094768276013, 2.23860580682454, 
    -0.297648866553386, -2.38340996245776, 1.44861597315028, 
    2.2610844297929, -2.6231255135526, -2.38340996245776, 2.23860580682454, 
    -0.828230153957865, 1.8842217721005, -1.20094768276013, -1.9422384338934, 
    1.44861597315028, 2.23860580682454, -2.38340996245776, 1.69610095222163, 
    1.8842217721005, 2.2610844297929, 1.44861597315028, 0.219212508989128, 
    -2.3823643056849, -0.56282968564021, 1.69610095222163, -0.404846537234961, 
    -1.20094768276013, -2.3823643056849, 2.40878156685994, -1.9422384338934, 
    -2.6231255135526, -0.297648866553386, 2.4943393252285, -2.50519920681956, 
    -0.297648866553386, -0.56282968564021, 1.69610095222163, 
    -0.404846537234961, 1.8842217721005, -0.561939092870071, 
    -1.23645258422661, -0.81049387016335, 1.44861597315028, -0.561939092870071, 
    2.23860580682454, 1.62581106228919, 2.2610844297929, 1.57423563197107, 
    1.62581106228919, -1.20094768276013, -0.561939092870071, 
    -0.111283133612885, -2.38340996245776, -0.297648866553386, 
    1.62581106228919, 2.4943393252285, 1.69610095222163, -0.297648866553386, 
    -0.81049387016335, -0.56282968564021, -0.56282968564021, 
    -0.81049387016335, -1.23645258422661, 1.62581106228919, -0.828230153957865, 
    1.62581106228919, -0.56282968564021, 2.23860580682454, -2.38340996245776, 
    -1.9422384338934, 2.40878156685994, 2.40878156685994, -2.3823643056849, 
    2.40878156685994, 2.23860580682454, 0.219212508989128, -2.6231255135526, 
    -0.828230153957865, 2.4943393252285, 0.219212508989128, 2.4943393252285, 
    0.219212508989128, 2.4943393252285, -0.111283133612885, 1.62581106228919, 
    -0.81049387016335), exposure_days = c(21, 19, 20, 20, 20, 
    21, 20, 20, 20, 19, 20, 20, 20, 21, 20, 21, 20, 20, 20, 20, 
    21, 20, 20, 20, 19, 21, 21, 20, 20, 20, 20, 19, 21, 21, 20, 
    19, 19, 19, 19, 19, 21, 19, 20, 20, 20, 20, 20, 19, 20, 19, 
    19, 19, 21, 19, 20, 19, 20, 19, 20, 20, 21, 20, 20, 21, 19, 
    20, 20, 20, 20, 20, 19, 20, 19, 19, 19, 19, 20, 20, 19, 20, 
    19, 20, 20, 20, 20, 20, 19, 20, 20, 19, 20, 19, 20, 19, 20, 
    19, 20, 20, 20, 19), consumption = c(0.065625, 0, 0.3125, 
    0.34375, 0.175, 0.184375, 0.453125, 0.0192307692307692, 0.271875, 
    0, 0.00625, 0, 0.896875, 0.25625, 0.3125, 0.021875, 0.265625, 
    0.46875, 0.0375, 0.421875, 0.121875, 0.159375, 0.181818181818182, 
    0.1875, 0.09375, 0.0625, 0.096875, 0.583333333333333, 0.0625, 
    0.140625, 0.1875, 0, 0.00625, 0.5875, 0.1625, 0.5625, 0.078125, 
    0, 0, 0, 0.015625, 0, 0.490625, 0.533333333333333, 0.246875, 
    0.546875, 0.3125, 0.209375, 0.225, 0, 0, 0.375, 0.08125, 
    0.265625, 0.178125, 0.2, 0.1, 0.109375, 0.590625, 0.065625, 
    0.0375, 0.1375, 0.115625, 0.13125, 0.53125, 0.4375, 0.21875, 
    0.171875, 0.06875, 0.1875, 0.0625, 0.65625, 0, 0, 0.00625, 
    0, 0.225, 0.153125, 0.171875, 0.10625, 0, 0.596875, 0.125, 
    0.190909090909091, 0.496875, 0.88125, 0.00625, 0.615625, 
    0.725, 0.5625, 0.146875, 0.046875, 0.31875, 0.1, 0.646875, 
    0.265625, 0.578125, 0.5, 0.075, 0.03125), cons_transf = c(0.25617376914899, 
    0, 0.559016994374947, 0.586301969977929, 0.418330013267038, 
    0.429389100932942, 0.673145600891813, 0.138675049056307, 
    0.521416340365355, 0, 0.0790569415042095, 0, 0.947034846243791, 
    0.506211418282915, 0.559016994374947, 0.14790199457749, 0.515388203202208, 
    0.684653196881458, 0.193649167310371, 0.649519052838329, 
    0.349106001094224, 0.399217985566783, 0.426401432711221, 
    0.433012701892219, 0.306186217847897, 0.25, 0.311247489949718, 
    0.763762615825973, 0.25, 0.375, 0.433012701892219, 0, 0.0790569415042095, 
    0.766485485837795, 0.403112887414928, 0.75, 0.279508497187474, 
    0, 0, 0, 0.125, 0, 0.700446286306095, 0.730296743340221, 
    0.496865172858795, 0.739509972887452, 0.559016994374947, 
    0.457575130443078, 0.474341649025257, 0, 0, 0.612372435695794, 
    0.285043856274785, 0.515388203202208, 0.422048575403353, 
    0.447213595499958, 0.316227766016838, 0.330718913883074, 
    0.76852130744697, 0.25617376914899, 0.193649167310371, 0.370809924354783, 
    0.340036762718386, 0.362284418654736, 0.728868986855663, 
    0.661437827766148, 0.467707173346743, 0.414578098794425, 
    0.262202212042538, 0.433012701892219, 0.25, 0.810092587300983, 
    0, 0, 0.0790569415042095, 0, 0.474341649025257, 0.391311896062463, 
    0.414578098794425, 0.325960120260132, 0, 0.772576857018122, 
    0.353553390593274, 0.436931448752651, 0.704893608993584, 
    0.938749167775929, 0.0790569415042095, 0.784617741323761, 
    0.85146931829632, 0.75, 0.383242742918897, 0.21650635094611, 
    0.564579489531811, 0.316227766016838, 0.804285397107271, 
    0.515388203202208, 0.760345316287277, 0.707106781186548, 
    0.273861278752583, 0.176776695296637), cons_transf2 = c(0.0635614814897446, 
    0, 0.271933715483642, 0.295464212893836, 0.161268147596122, 
    0.169215209288654, 0.373716409793584, 0.0190481949706944, 
    0.240492189648823, 0, 0.00623054975063616, 0, 0.640207795265726, 
    0.228131092825249, 0.271933715483642, 0.0216391751034812, 
    0.235566071312767, 0.384411698910332, 0.0368139731227164, 
    0.351976423157178, 0.115001392694507, 0.147881066813663, 
    0.167054084663166, 0.171850256926659, 0.0896121586896871, 
    0.0606246218164348, 0.0924652276720936, 0.45953232937844, 
    0.0606246218164348, 0.131576357788719, 0.171850256926659, 
    0, 0.00623054975063616, 0.46216045178471, 0.150572858479374, 
    0.44628710262842, 0.0752234212375875, 0, 0, 0, 0.0155041865359653, 
    0, 0.399195495094569, 0.42744401482694, 0.220640421096091, 
    0.436236766774918, 0.271933715483642, 0.19010369723601, 0.20294084399669, 
    0, 0, 0.318453731118535, 0.0781177792639521, 0.235566071312767, 
    0.163924191654239, 0.182321556793955, 0.0953101798043249, 
    0.103796793681644, 0.46412702075675, 0.0635614814897446, 
    0.0368139731227164, 0.128832871842968, 0.109414785985867, 
    0.123323216031999, 0.4260843953109, 0.362905493689368, 0.19782574332992, 
    0.158605030176639, 0.066489741268833, 0.171850256926659, 
    0.0606246218164348, 0.504556010752395, 0, 0, 0.00623054975063616, 
    0, 0.20294084399669, 0.142475648246755, 0.158605030176639, 
    0.100975917340002, 0, 0.468048594409932, 0.117783035656383, 
    0.174716957408735, 0.403379601617143, 0.631936449515049, 
    0.00623054975063616, 0.479721878714657, 0.545227050483323, 
    0.44628710262842, 0.137040852260798, 0.0458095360312942, 
    0.27668431824224, 0.0953101798043249, 0.49887955274759, 0.235566071312767, 
    0.456237433481588, 0.405465108108164, 0.0723206615796261, 
    0.0307716586667537), cons_transf3 = c(0.93841642228739, 1, 
    0.761904761904762, 0.744186046511628, 0.851063829787234, 
    0.844327176781003, 0.688172043010753, 0.981132075471698, 
    0.786240786240786, 1, 0.993788819875776, 1, 0.527182866556837, 
    0.796019900497512, 0.761904761904762, 0.978593272171254, 
    0.790123456790123, 0.680851063829787, 0.963855421686747, 
    0.703296703296703, 0.891364902506964, 0.862533692722372, 
    0.846153846153846, 0.842105263157895, 0.914285714285714, 
    0.941176470588235, 0.911680911680912, 0.631578947368421, 
    0.941176470588235, 0.876712328767123, 0.842105263157895, 
    1, 0.993788819875776, 0.62992125984252, 0.860215053763441, 
    0.64, 0.927536231884058, 1, 1, 1, 0.984615384615385, 1, 0.670859538784067, 
    0.652173913043478, 0.802005012531328, 0.646464646464647, 
    0.761904761904762, 0.82687338501292, 0.816326530612245, 1, 
    1, 0.727272727272727, 0.92485549132948, 0.790123456790123, 
    0.848806366047745, 0.833333333333333, 0.909090909090909, 
    0.901408450704225, 0.628683693516699, 0.93841642228739, 0.963855421686747, 
    0.879120879120879, 0.896358543417367, 0.883977900552486, 
    0.653061224489796, 0.695652173913043, 0.82051282051282, 0.853333333333333, 
    0.935672514619883, 0.842105263157895, 0.941176470588235, 
    0.60377358490566, 1, 1, 0.993788819875776, 1, 0.816326530612245, 
    0.867208672086721, 0.853333333333333, 0.903954802259887, 
    1, 0.626223091976517, 0.888888888888889, 0.83969465648855, 
    0.668058455114823, 0.53156146179402, 0.993788819875776, 0.618955512572534, 
    0.579710144927536, 0.64, 0.871934604904632, 0.955223880597015, 
    0.758293838862559, 0.909090909090909, 0.607210626185958, 
    0.790123456790123, 0.633663366336634, 0.666666666666667, 
    0.930232558139535, 0.96969696969697), cons_transf4 = c(0.403357161506136, 
    0, 0.678604404148727, 0.700509832663847, 0.559344471040698, 
    0.569159528740626, 0.768079206421462, 0.267916144918562, 
    0.647823092234906, 0, 0.184201574932019, 0, 0.964370624177648, 
    0.63516704638624, 0.678604404148727, 0.279672235520349, 0.642820397664559, 
    0.776808126488465, 0.334716475041085, 0.75, 0.495798120670194, 
    0.542175721312549, 0.566516334942705, 0.572357121276666, 
    0.454280148208035, 0.39685026299205, 0.459272637503557, 0.835549655827431, 
    0.39685026299205, 0.520020955762976, 0.572357121276666, 0, 
    0.184201574932019, 0.837534341801117, 0.545696441530553, 
    0.825481812223657, 0.427493986669174, 0, 0, 0, 0.25, 0, 0.788708566719032, 
    0.810960266076453, 0.627324676023275, 0.817766577547147, 
    0.678604404148727, 0.593801934515397, 0.60822019955734, 0, 
    0, 0.721124785153704, 0.433119552670451, 0.642820397664559, 
    0.562654278669283, 0.584803547642573, 0.464158883361278, 
    0.478232795693097, 0.839016706561048, 0.403357161506136, 
    0.334716475041085, 0.516140057728184, 0.487173790093664, 
    0.508198178407427, 0.809902950319371, 0.759147242968916, 
    0.602535566043808, 0.555995022642329, 0.409660635300323, 
    0.572357121276666, 0.39685026299205, 0.869006661221612, 0, 
    0, 0.184201574932019, 0, 0.60822019955734, 0.53499374028254, 
    0.555995022642329, 0.473634118592955, 0, 0.841965822923538, 
    0.5, 0.575805138911868, 0.792043526329418, 0.958737489687269, 
    0.184201574932019, 0.850691478848779, 0.898350889571526, 
    0.825481812223657, 0.527613573622537, 0.360562392576852, 
    0.683098604023617, 0.464158883361278, 0.864848670999924, 
    0.642820397664559, 0.833055462911488, 0.7937005259841, 0.421716332650875, 
    0.314980262473718)), row.names = c(NA, -100L), class = "data.frame")
kjetil b halvorsen
  • 63,378
  • 26
  • 142
  • 467

1 Answers1

0

to check multiple models and find the best one by AIC criterion you can use stepAIC() function from MASS package.

This function adds and subtracts variables from the model until it finds an optimal solution (taking into account AIC). In each step the fuction refits the model with one variable omitted or added.

What you can do is to build your model on all variables and let the function find the 'best' one:

regression<-glm(dependent_variable ~ ., df, family = "poisson")
model.stepwise.regression<-stepAIC(regression, direction = "both")
  • Thanks for the hint, I haven't come across this function! However, I'm not sure how well this function works for my example here, I don't get useful AIC scores as they all are too large (i.e., it shows "Inf"). (Output in next comment) –  Mar 01 '22 at 11:54
  • > stepwise.model 68.155 Inf - region 1 73.195 Inf - exposition 1 68.257 Inf - elevation_level 1 70.157 Inf - climate_pca1 1 69.356 Inf - climate_pca2 1 68.908 Inf - soil_pca1 1 73.382 Inf - soil_pca2 1 69.512 Inf –  Mar 01 '22 at 11:55
  • [Stepwise regression is problematic.](https://stats.stackexchange.com/questions/20836/algorithms-for-automatic-model-selection) – Dave Mar 04 '22 at 02:03