I have the following gamm4 output:
This is longitudinal data modeled as:
gamm4(Mean_DTI ~ s(Age) + Sex + Timepoint_yrs,
random = ~ (1 + Timepoint_yrs | ID),
data = DF)
I choose gamm
because the data is nonlinear across age in a cross-sectional sample. However, the results show edf
is 1 and the plots are linear. This isn't too surprising because the data set is within young adults as opposed to across the lifespan.
My question is: should I be testing a different model instead like: lmer(Mean_DTI ~ Age + Sex + Timepoint_yrs + (1 + Timepoint_yrs|ID), data = DF)
and then compare AIC
? Or can I report my gamm4
results and simply state the effect of age is linear?
data sample:
structure(list(ID = c(33714L, 35377L, 40556L, 40798L, 40800L,
40815L, 50848L, 52183L, 52461L, 53320L, 53873L, 54206L, 54581L,
55122L, 55267L, 55462L, 55612L, 55920L, 56022L, 56307L, 56420L,
56679L, 57405L, 57480L, 57725L, 57809L, 58004L, 58215L, 58229L,
59326L, 59327L, 59865L, 60099L, 60100L, 60280L, 60384L, 60429L,
60493L, 60503L, 60603L, 60664L, 60846L, 61415L, 61749L, 61883L,
62081L, 62983L, 63327L, 63329L, 64418L, 64507L, 64596L, 65178L,
65250L, 65802L, 65975L, 65978L, 66396L, 66572L, 66589L, 74034L,
74427L, 74607L, 74952L, 75732L, 76574L, 76595L, 76755L, 76759L,
77203L, 77453L, 77668L, 81064L, 81065L, 33714L, 35377L, 40556L,
40798L, 40800L, 40815L, 50848L, 52183L, 52461L, 53320L, 53873L,
54206L, 54581L, 55122L, 55267L, 55462L, 55612L, 55920L, 56022L,
56307L, 56420L, 56679L, 57405L, 57480L, 57725L, 57809L, 58004L,
58215L, 58229L, 59326L, 59327L, 59865L, 60099L, 60100L, 60280L,
60384L, 60429L, 60493L, 60503L, 60603L, 60664L, 60846L, 61415L,
61749L, 61883L, 62081L, 62983L, 63327L, 63329L, 64418L, 64507L,
64596L, 65178L, 65250L, 65802L, 65975L, 65978L, 66396L, 66572L,
66589L, 74034L, 74427L, 74607L, 74952L, 75732L, 76574L, 76595L,
76755L, 76759L, 77203L, 77453L, 77668L, 81064L, 81065L, 33714L,
35377L, 40556L, 40798L, 40800L, 40815L, 50848L, 52183L, 52461L,
53320L, 53873L, 54206L, 54581L, 55122L, 55267L, 55462L, 55612L,
55920L, 56022L, 56307L, 56420L, 56679L, 57405L, 57480L, 57725L,
57809L, 58004L, 58215L, 58229L, 59326L, 59327L, 59865L, 60099L,
60100L, 60280L, 60384L, 60429L, 60493L, 60503L, 60603L, 60664L,
60846L, 61415L, 61749L, 61883L, 62081L, 62983L, 63327L, 63329L,
64418L, 64507L, 64596L, 65178L, 65250L, 65802L, 65975L, 65978L,
66396L, 66572L, 66589L, 74034L, 74427L, 74607L, 74952L, 75732L,
76574L, 76595L, 76755L, 76759L, 77203L, 77453L, 77668L, 81064L,
81065L), Sex = structure(c(1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L,
2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L,
2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L,
2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
2L, 1L, 2L, 1L, 1L), .Label = c("Male", "Female"), class = "factor"),
Age = c(15L, 15L, 9L, 11L, 16L, 9L, 16L, 16L, 14L, 8L, 6L,
14L, 10L, 15L, 13L, 15L, 8L, 9L, 9L, 8L, 9L, 9L, 13L, 10L,
7L, 8L, 8L, 6L, 15L, 8L, 11L, 14L, 12L, 10L, 16L, 12L, 10L,
6L, 13L, 11L, 12L, 13L, 10L, 13L, 14L, 12L, 17L, 9L, 12L,
11L, 10L, 12L, 10L, 10L, 14L, 16L, 15L, 14L, 14L, 13L, 10L,
12L, 9L, 9L, 16L, 10L, 14L, 15L, 13L, 15L, 13L, 13L, 8L,
11L, 16L, 16L, 11L, 13L, 18L, 10L, 18L, 18L, 15L, 10L, 8L,
15L, 12L, 16L, 14L, 16L, 9L, 11L, 11L, 10L, 10L, 11L, 14L,
12L, 8L, 9L, 9L, 8L, 16L, 9L, 13L, 16L, 13L, 12L, 18L, 13L,
11L, 8L, 14L, 12L, 13L, 14L, 11L, 14L, 15L, 14L, 18L, 11L,
14L, 12L, 12L, 13L, 11L, 11L, 15L, 17L, 16L, 15L, 15L, 14L,
11L, 13L, 10L, 11L, 18L, 11L, 15L, 16L, 14L, 17L, 14L, 14L,
9L, 12L, 18L, 18L, 12L, 14L, 19L, 11L, 19L, 19L, 16L, 11L,
9L, 17L, 13L, 18L, 16L, 18L, 11L, 12L, 12L, 11L, 11L, 12L,
16L, 13L, 9L, 11L, 10L, 9L, 17L, 11L, 14L, 17L, 14L, 13L,
19L, 15L, 12L, 9L, 15L, 14L, 14L, 15L, 12L, 16L, 17L, 15L,
20L, 12L, 15L, 13L, 13L, 14L, 12L, 12L, 16L, 19L, 18L, 16L,
16L, 15L, 12L, 14L, 11L, 11L, 19L, 12L, 16L, 17L, 15L, 18L,
15L, 15L, 10L, 13L), Timepoint_yrs = c(0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 2L, 2L, 2L, 1L,
2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L,
2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 2L, 3L,
3L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L,
3L, 3L, 2L, 3L, 2L, 3L, 2L, 3L, 3L, 3L, 2L, 3L, 3L, 3L, 2L,
3L, 2L, 3L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 2L,
2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L,
2L, 2L, 3L, 2L, 2L, 2L, 2L), Mean_DTI = c(-1.29114475134035,
-0.602946528016743, 1.41024744477638, 0.666624732324295,
-0.892919147953548, 0.6407945839951, 0.205705854349546, 0.402741860197385,
-1.07334078703688, 1.08029650481248, 0.350172965356561, -2.54347860616321,
0.413255639165549, -0.3523032294053, -0.760004213837485,
-0.370085793832933, 0.541108383408053, 0.103423658955543,
2.07157712184801, -0.313622906781678, 0.365099935496544,
0.880404904676991, -0.584385165147017, 0.12808560962161,
-1.30879751602764, 0.897408670662543, -0.553700506528817,
1.90361625783806, -1.00532572309467, 0.210378645002065, -0.759874414097138,
-0.977159179439218, -0.483530766896841, 0.0460521737218543,
0.816803031906609, 0.313569438578502, 0.416370832933893,
-0.675893982092161, 0.339788986128743, 0.361465542766807,
-0.473536186890064, -0.0725847889559601, -1.60084693181001,
0.52306621949972, 0.946083573292935, 0.725034615480771, -1.17328658710462,
-1.00844091686302, -1.8176124981907, 0.124970415853266, 0.408323249032337,
-0.794920343991022, 0.378079909531318, -0.484179765598582,
1.21152404230402, -0.167727998630842, -0.863195007413922,
-1.32982507396397, -0.126711280680964, 1.19361167813603,
-1.5114408706585, 0.225175815401707, -1.95151391033341, 0.437398390870228,
0.222839420075445, -0.580750772417285, -0.449523234925738,
-0.389555754885093, 1.32535841458897, -0.79258394866476,
1.44178878168087, 0.108875248050149, -0.94159405058394, 0.200643664475987,
-0.592692348529272, -1.78438376466168, 0.605618854360869,
1.30433085665264, -0.973265187228787, -0.0480526380302461,
0.505153855331735, 0.12237442104631, -0.716780900301692,
1.23748399037357, 1.94008998487577, -0.604763724381611, 0.165078535620709,
-0.361648810710331, -0.738068057718721, -0.278966376108835,
1.18712169111865, 0.737754990034845, 0.729967005613983, 0.335375794956919,
0.671557122457513, -0.149556034982162, -0.980923371909302,
0.818879827752172, 0.716987031579215, 0.818230829050431,
0.584980695645581, 2.19930006635016, -0.722621888617338,
0.440902983859612, -0.859950013905226, -0.346332441349301,
0.471146323360632, -0.421097091789588, 0.281508902712614,
-0.0929633481905548, 0.37950770667514, 0.618339228914943,
0.129902805986478, 0.505153855331735, -0.145142843810338,
-1.05906281559863, -0.493784946384312, 0.584980695645581,
1.084969295465, 0.281119503491573, -0.607100119707868, -0.901615730556844,
-0.289090755855959, 0.401573662534256, -0.257809018432158,
-0.875136583525909, 0.36704693160176, 0.8515893623198, 1.01241124061062,
-1.21009779346724, -1.73378782587414, -1.76114961113944,
0.477506510637671, 0.993979677481246, -0.915893701995093,
-0.514033705878554, -0.0955593429975106, 0.0897946862190348,
-0.234445065169567, 0.208301849156502, -1.14135585097908,
0.198956267851466, 0.484126297395405, -1.70196092954088,
1.25500695532051, 0.0929098799873784, -0.172919988244748,
0.135743794302125, -0.517797898348638, -0.384623364751881,
-0.800371933085622, 0.599388466824176, -0.594769144374834,
-0.352692628626341, 0.250746364250208, -0.157733418624065,
-0.509101315745342, 0.874563916361345, -0.626310481279334,
-0.748452036946539, 0.257366151007941, 0.28124930323192,
-1.6865147604395, -0.437192259592705, 0.967240930969617,
0.740610584322495, 0.144310577165074, -1.58890535569802,
0.269048127639234, 0.942708780043898, -0.76130221124096,
0.00269906044571462, 0.455959753739949, -0.0895885549415116,
1.1614213425298, 1.50019866483735, -0.545315443302354, 0.908571448332448,
-1.23792685779779, -2.28229556863553, -0.105943322225328,
0.146257573270289, -0.10737111936915, -1.3652604030789, -0.534931464074537,
-1.41458430441103, 0.0974528708995497, -0.695623542625015,
0.703747458063747, -0.255862022326943, -0.462243609479818,
0.53163300236267, 1.06446093649006, -0.482362569233713, -1.10618012134485,
-0.616056301791863, -0.504039125871783, -0.0945209450747294,
-0.290907952220827, -0.4630224079219, -0.342827848359916,
0.887414090655766, 1.50759725003717, -0.60712607965594, -1.37935665488066,
-0.524677284587066, 0.496327472988091, 1.01500723541758,
-1.21508210349659, 0.0894052869979883, -0.0519466302406771,
0.701930261698879, -1.13286694796034, -0.657332619222435,
-1.27816477730558, -0.300642932746905, -0.284807364424481,
-1.31884401593055, 0.958544348366316, -0.492357149240484,
-0.356586620836772, 0.554477756663868)), row.names = c(NA,
-222L), class = c("tbl_df", "tbl", "data.frame"))