First, it's well known that $\sum_{i=1}^n \log x_i$ is complete & minimal sufficient for the shape parameter $\alpha$ of an untruncated Pareto distribution—& truncation doesn't affect the completeness or sufficiency of a statistic (Smith, 1957). Consequently (1) you ought to be basing an estimator on the sum of logged observations (or the sample geometric mean, or an equivalent), & (2) you'll be lucky to find an estimator based on the sum of observations (or the sample arithmetic mean, or an equivalent), either derived in papers or textbooks, or implemented in software libraries.
If for some reason all you have to work with is $\sum_{i=1}^n x_i$, then you could try a method-of-moments approach to estimating $\alpha$. Given a Pareto distribution with density
$$
f(x)= \frac{\alpha \beta^\alpha}{x^{\alpha+1}}
$$
its expectation when truncated above at $\tau$ is
$$
\begin{align}
\operatorname{E} X &= \frac{\int^\tau x f(x)\ \mathrm{d} x}{\int^\tau f(x) \ \operatorname{d} x} \\
&= \frac{\int_\beta^\tau x^{-\alpha}\ \mathrm{d}x}
{\int_\beta^\tau x^{-(\alpha+1)}\ \mathrm{d}x}\\
&= \frac{\alpha}{1-\alpha}\cdot\frac{[x^{1-\alpha}]^\tau_\beta}{[x^\alpha]^\tau_\beta}\\
&= \frac{\alpha}{1-\alpha}\cdot\frac{\tau^{1-\alpha} - \beta^{1-\alpha}}{\tau^{-\alpha}-\beta^{-\alpha}}\\
&= \frac{\alpha\beta}{\alpha-1}\cdot\frac{1 - \left(\frac{\beta}{\tau}\right)^{\alpha-1}}{1-\left(\frac{\beta}{\tau}\right)^{\alpha}}\\
\end{align}
$$
So plug in the sample mean $\bar x$ for $\operatorname{E} X$, & $\hat\alpha$ for $\alpha$, & find the root for $\hat\alpha$ numerically. (You could bootstrap to get confidence interval/standard error/bias estimates.)
# function to generate Pareto variates
rpareto <- function(n, alpha, beta) beta/(1-runif(n))^(1/alpha)
# function to calculate expectation
EX <- Vectorize(function(alpha, beta, tau, epsilon = 1e-7){
if (abs(alpha-1) > epsilon){
(alpha*beta/(alpha-1)) * (1 - (beta/tau)^(alpha-1)) / (1 - (beta/tau)^alpha)
}
else {
alpha*beta*log(tau/beta) / (1 - (beta/tau)^alpha)
}
})
# function that you'll find the root of
f <- function(alpha, x.bar, beta, tau, epsilon = 1e-7) {
x.bar - EX(alpha, beta, tau, epsilon = 1e-7)
}
alpha_0 <- 2 # true value of alpha
beta <- 3
tau <- 9
# make up some data
set.seed(1234)
x <- rpareto(200, alpha_0, beta)
x <- x[x < tau]
length(x)
plot(ecdf(x), verticals=TRUE, pch="")
# find sample mean
(x.bar <- mean(x))
# find roughly where alpha.hat lies
alpha <- seq(1, 3, by=0.1)
plot(alpha, EX(alpha, beta, tau), type="l", ylab="EX")
abline(h = x.bar, lty=2)
# calculate alpha.hat
(alpha.hat <- uniroot(f, x.bar=x.bar, beta = beta, tau = tau, lower = 2, upper = 3)$root)
Note
$$\lim_{\alpha \rightarrow 1} \frac{1-\left(\frac{\beta}{\tau}\right)^{\alpha-1}}{\alpha-1} = \log \frac{\tau}{\beta}$$
for when $\alpha \approx 1$ in numerical calculations.
Smith (1957), "A Note on Truncation and Sufficient Statistics", Ann. Math. Statist., 28, 1