I am new to mixed effect model. I am running a linear mixed effect model on sholl analysis data using lme4. I am using the following formula to look for any changes in intersections with different experimental group (Exp).
model2 = lmer(Intersections~ 1+ Exp + Radius + Exp*Radius + (1|Exp), data = data_dmNC)
output:
> summary(model2)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]
Formula: Intersections ~ 1 + Exp + Radius + Exp * Radius + (1 | Exp)
Data: data_dmNC
REML criterion at convergence: 10301.5
Scaled residuals:
Min 1Q Median 3Q Max
-1.8671 -0.6914 -0.2018 0.4566 5.8317
Random effects:
Groups Name Variance Std.Dev.
Exp (Intercept) 0.260 0.5099
Residual 4.805 2.1920
Number of obs: 2330, groups: Exp, 3
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.344e+00 5.434e-01 4.102e-09 9.835 1.00000
ExpTrained -2.003e-01 7.608e-01 3.940e-09 -0.263 1.00000
ExpUndertrained -8.954e-01 7.590e-01 3.903e-09 -1.180 1.00000
Radius -5.863e-02 4.715e-03 2.324e+03 -12.434 < 2e-16 ***
ExpTrained:Radius 2.359e-02 5.562e-03 2.324e+03 4.241 2.31e-05 ***
ExpUndertrained:Radius 1.567e-02 5.787e-03 2.324e+03 2.708 0.00682 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) ExpTrn ExpUnd Radius ExpT:R
ExpTrained -0.714
ExpUndrtrnd -0.716 0.511
Radius -0.304 0.217 0.218
ExpTrnd:Rds 0.258 -0.276 -0.185 -0.848
ExpUndrtr:R 0.248 -0.177 -0.273 -0.815 0.691
My problem is I have 3 factors in Exp group (Trained, No Association and Undertrained) but the summary only shows output for Trained and undertrained. I am not able to figure out why.
Secondly, I also want to compare differences Between Trained, No association and Undertrained groups the way we do it in ANOVA and post hoc. Is this possible in LME? If yes, then can you suggest what changes should i make in my code?