Take two distributions $F_B(x)$, $F_A(x)$ with the same support. Assume that B is a mean-preserving spread of A.
What I want to understand is whether $E_{A}[x | x \leq t] \geq E_{B}[x | x \leq t]$, but I'm struggling. From the definition of mean-preserving spread:
$\int_{-\infty}^{t} F_B(x) dx \geq \int_{-\infty}^{t} F_A(x) dx \quad \leftrightarrow \quad \int_{-\infty}^{t} 1 - F_B(x) dx \leq \int_{-\infty}^{t}1 - F_A(x) dx$
$ \quad \qquad \qquad \qquad \qquad \qquad \qquad \quad \leftrightarrow \quad E_B [x | x\leq t]F_B(t) \leq E_A [x | x\leq t]F_A(t)$.
Unfortunately $F_B(t)$, $F_A(t)$ cannot generally be ordered. Do I need some more stringent conditions (eg: $t< E[x]$)?