I would like to ask whether there's a way to decide which test is the strongest in accomplishing the normality condition. Let's take this example, using a dataset I'm working on:
> data1
age fev ht sex smoke
1 9 1.708 145 0 0
2 8 1.724 171 0 0
3 7 1.720 138 0 0
4 8 2.336 155 0 0
5 6 1.919 147 0 0
6 6 1.415 NA 0 0
7 8 1.987 149 0 0
8 9 1.942 152 0 0
9 6 1.602 135 0 0
10 8 2.193 149 0 0
11 6 1.878 135 0 0
12 5 1.400 124 0 0
13 5 1.256 133 0 0
14 4 0.839 122 0 0
15 9 2.988 165 0 0
16 8 2.980 152 0 0
17 9 2.100 NA 0 0
18 5 1.282 124 0 0
19 8 2.673 152 0 0
20 7 2.093 146 0 0
21 5 1.612 132 0 0
22 8 2.175 150 0 0
23 9 3.135 152 0 0
24 8 1.931 145 0 0
25 5 1.343 127 0 0
26 9 2.076 145 0 0
27 8 1.344 133 0 0
28 9 2.797 156 0 0
29 9 3.016 159 0 0
30 7 2.419 152 0 0
31 4 1.569 127 0 0
32 8 1.698 146 0 0
33 8 2.481 152 0 0
34 6 1.481 130 0 0
35 4 1.577 124 0 0
36 7 1.631 141 0 0
37 5 1.536 132 0 0
38 9 2.560 154 0 0
39 8 2.531 147 0 0
40 6 1.719 135 0 0
41 7 2.111 145 0 0
42 6 1.695 135 0 0
43 7 1.917 NA 0 0
44 8 2.144 160 0 0
45 9 3.029 156 0 0
46 8 2.215 152 0 0
47 8 2.388 152 0 0
48 8 1.292 132 0 0
49 9 2.574 NA 0 0
50 7 1.742 149 0 0
51 7 1.603 130 0 0
52 8 2.639 151 0 0
53 7 1.829 137 0 0
54 7 1.473 133 0 0
55 8 2.341 154 0 0
56 7 1.698 138 0 0
57 5 1.196 118 0 0
58 8 1.872 144 0 0
59 7 1.827 138 0 0
60 7 1.461 137 0 0
61 8 1.697 150 0 0
62 9 2.040 141 0 0
63 7 1.609 131 0 0
64 8 2.458 155 0 0
65 9 1.947 144 0 0
66 8 2.288 156 0 0
67 5 0.791 132 0 0
68 9 2.463 155 0 0
69 9 2.631 157 0 0
70 8 2.293 147 0 0
71 9 3.042 168 0 0
72 8 2.665 163 0 0
73 9 2.592 154 0 0
74 7 1.750 140 0 0
75 9 2.259 149 0 0
76 9 2.048 164 0 0
77 8 1.780 149 0 0
78 5 1.552 137 0 0
79 8 1.953 147 0 0
80 9 2.851 152 0 0
81 9 3.004 163 0 0
82 9 1.933 147 0 0
83 9 2.091 149 0 0
84 9 2.316 151 0 0
85 5 1.704 130 0 0
86 9 1.606 146 0 0
87 6 2.102 141 0 0
88 9 2.320 145 0 0
89 5 1.146 127 0 0
90 8 2.187 156 0 0
91 8 1.335 144 0 0
92 8 2.709 159 0 0
93 5 1.092 127 0 0
94 9 2.166 146 0 0
95 7 1.690 NA 0 0
96 8 2.145 151 0 0
97 7 2.095 145 0 0
98 6 1.697 140 0 0
99 9 2.455 152 0 0
100 9 2.130 150 0 0
101 8 2.993 160 0 0
102 9 2.529 150 0 0
103 7 1.726 135 0 0
104 9 2.442 156 0 0
105 4 1.102 122 0 0
106 9 2.056 160 0 0
107 8 2.305 164 0 0
108 9 1.969 150 0 0
109 8 1.556 149 0 0
110 3 1.072 117 0 0
111 8 1.512 135 0 0
112 7 1.370 140 0 0
113 6 1.338 NA 0 0
114 9 2.639 NA 0 0
115 4 1.389 NA 0 0
116 8 2.135 150 0 0
117 9 3.223 165 0 0
118 6 1.796 140 0 0
119 6 1.523 130 0 0
120 9 2.485 163 0 0
121 8 2.335 150 0 0
122 7 1.415 136 0 0
123 7 1.728 144 0 0
124 9 2.850 160 0 0
125 8 1.844 144 0 0
126 9 1.754 156 0 0
127 6 1.343 132 0 0
128 8 2.476 160 0 0
129 8 2.382 157 0 0
130 7 1.640 140 0 0
131 5 1.589 130 0 0
132 9 1.886 142 0 0
133 9 1.912 150 0 0
134 7 1.877 133 0 0
135 7 1.935 133 0 0
136 5 1.539 127 0 0
137 8 2.358 155 0 0
138 6 1.535 140 0 0
139 9 2.182 151 0 0
140 7 2.002 146 0 0
141 7 2.366 147 0 0
142 8 2.069 152 0 0
143 4 1.418 124 0 0
144 8 2.333 145 0 0
145 8 1.758 132 0 0
146 7 2.564 147 0 0
147 9 2.487 163 0 0
148 9 1.591 145 0 0
149 8 1.999 144 0 0
150 9 2.688 151 0 0
151 6 1.672 137 0 0
152 8 2.015 146 0 0
153 7 2.371 141 0 0
154 8 2.328 152 0 0
155 7 1.495 145 0 0
156 11 2.170 147 0 0
157 12 3.058 154 0 0
158 10 2.642 155 0 0
159 12 2.841 160 0 0
160 10 3.166 156 0 0
161 13 3.816 161 0 0
162 11 3.654 165 0 0
163 11 2.665 160 0 0
164 14 2.236 168 0 1
165 11 3.490 170 0 0
166 13 3.147 163 0 0
167 10 2.520 154 0 0
168 12 2.889 163 0 0
169 11 2.386 156 0 0
170 11 2.762 152 0 0
171 11 3.011 163 0 0
172 11 3.236 168 0 0
173 10 2.864 152 0 0
174 14 3.428 163 0 1
175 13 2.819 157 0 0
176 10 2.250 147 0 0
177 13 3.208 155 0 1
178 11 2.346 150 0 0
179 11 2.754 166 0 0
180 11 2.633 157 0 0
181 10 3.048 166 0 0
182 13 3.745 173 0 0
183 12 2.384 161 0 1
184 10 3.183 166 0 0
185 14 3.074 165 0 1
186 11 3.411 161 0 0
187 10 2.387 168 0 1
188 11 3.171 160 0 0
189 13 2.646 156 0 0
190 10 2.504 152 0 0
191 10 2.891 155 0 0
192 10 1.823 145 0 0
193 10 2.175 147 0 0
194 11 2.735 159 0 0
195 12 3.835 177 0 1
196 11 2.318 150 0 0
197 14 3.395 170 0 0
198 12 2.751 160 0 0
199 10 2.673 164 0 0
200 12 2.556 157 0 0
201 11 2.542 157 0 0
202 11 2.354 157 0 0
203 13 2.599 159 0 1
204 10 1.458 145 0 0
205 11 2.491 150 0 0
206 13 3.060 156 0 0
207 10 3.305 165 0 0
208 11 3.774 170 0 0
209 14 3.169 163 0 0
210 13 2.704 155 0 0
211 11 3.515 163 0 0
212 10 2.287 155 0 0
213 13 2.434 166 0 0
214 10 2.365 NA 0 0
215 13 3.086 171 0 1
216 12 2.868 157 0 0
217 10 2.813 156 0 0
218 12 3.255 168 0 0
219 10 3.413 168 0 1
220 10 2.975 160 0 1
221 11 3.223 164 0 0
222 11 2.606 165 0 0
223 11 3.169 159 0 1
224 10 2.358 150 0 0
225 12 2.347 156 0 0
226 10 2.691 170 0 0
227 11 2.827 159 0 0
228 14 2.538 180 0 0
229 10 3.050 152 0 0
230 12 3.079 152 0 0
231 13 2.216 173 0 1
232 12 3.403 157 0 0
233 12 3.501 164 0 0
234 11 2.578 160 0 0
235 13 3.078 168 0 1
236 12 3.186 170 0 1
237 11 2.081 160 0 0
238 11 2.974 157 0 0
239 13 3.297 165 0 1
240 10 2.250 147 0 0
241 12 2.752 161 0 0
242 11 3.102 163 0 1
243 10 2.862 155 0 0
244 13 2.677 170 0 1
245 11 3.023 171 0 0
246 11 3.681 173 0 0
247 13 3.255 169 0 0
248 10 2.356 154 0 0
249 12 3.082 161 0 0
250 13 3.297 165 0 1
251 11 3.258 160 0 0
252 11 2.362 155 0 0
253 11 2.563 160 0 0
254 13 3.331 166 0 0
255 12 2.417 155 0 0
256 12 2.759 156 0 1
257 11 2.953 NA 0 1
258 12 2.866 157 0 0
259 14 2.891 157 0 0
260 11 3.022 156 0 0
261 11 2.866 154 0 0
262 12 2.605 NA 0 0
263 13 3.056 160 0 0
264 12 2.569 160 0 0
265 11 2.501 157 0 0
266 13 3.785 160 0 1
267 13 2.449 160 0 0
268 10 3.073 168 0 0
269 10 2.688 157 0 0
270 11 2.689 156 0 0
271 14 2.934 163 0 0
272 10 2.435 165 0 0
273 10 2.838 160 0 0
274 12 3.035 157 0 0
275 12 2.714 166 0 0
276 10 3.086 157 0 0
277 12 3.519 166 0 0
278 12 3.341 166 0 0
279 10 3.038 165 0 1
280 10 2.568 161 0 0
281 12 3.001 161 0 0
282 10 3.132 151 0 0
283 13 3.577 161 0 0
284 12 3.222 155 0 0
285 11 2.822 157 0 0
286 11 2.140 154 0 0
287 14 2.997 164 0 0
288 11 3.120 155 0 1
289 11 2.562 159 0 0
290 12 3.082 164 0 0
291 13 3.152 NA 0 1
292 11 2.458 152 0 0
293 13 3.141 NA 0 0
294 12 2.579 160 0 0
295 11 3.104 171 0 1
296 11 3.069 165 0 1
297 18 2.906 168 0 0
298 19 3.519 168 0 1
299 15 2.635 163 0 0
300 15 2.679 168 0 1
301 15 2.198 157 0 1
302 19 3.345 166 0 1
303 18 3.082 164 0 0
304 16 3.387 169 0 0
305 16 2.903 160 0 1
306 15 3.004 163 0 1
307 17 3.500 157 0 0
308 16 3.674 171 0 0
309 15 3.122 163 0 1
310 15 3.330 174 0 1
311 16 2.608 157 0 1
312 15 2.887 160 0 0
313 16 2.981 168 0 0
314 15 2.264 160 0 1
315 15 2.278 152 0 1
316 18 2.853 152 0 0
317 16 2.795 160 0 1
318 15 3.211 169 0 0
319 9 1.558 135 1 0
320 9 1.895 145 1 0
321 8 1.735 137 1 0
322 8 2.118 154 1 0
323 8 2.258 147 1 0
324 7 1.932 135 1 0
325 5 1.472 127 1 0
326 9 2.352 150 1 0
327 9 2.604 156 1 0
328 7 2.578 159 1 0
329 3 NA 131 1 0
330 9 2.348 152 1 0
331 5 1.755 132 1 0
332 9 NA 166 1 0
333 9 2.725 150 1 0
334 8 NA 140 1 0
335 8 NA 145 1 0
336 8 2.004 NA 1 0
337 8 2.420 150 1 0
338 5 1.776 130 1 0
339 7 1.624 137 1 0
340 6 1.650 140 1 0
341 8 2.732 154 1 0
342 5 2.017 138 1 0
343 9 3.556 157 1 0
344 8 NA 138 1 0
345 6 1.634 137 1 0
346 9 2.570 145 1 0
347 8 2.123 152 1 0
348 8 1.940 150 1 0
349 6 1.747 146 1 0
350 9 2.069 147 1 0
351 8 1.962 145 1 0
352 9 2.715 152 1 0
353 9 2.457 150 1 0
354 9 2.090 151 1 0
355 7 1.789 142 1 0
356 5 1.858 135 1 0
357 5 1.452 130 1 0
358 9 NA 175 1 0
359 8 NA 160 1 0
360 8 NA 138 1 0
361 7 1.253 132 1 0
362 9 2.659 156 1 0
363 5 1.580 NA 1 0
364 9 2.126 157 1 0
365 9 2.964 164 1 0
366 7 NA 146 1 0
367 9 2.196 155 1 0
368 9 1.751 147 1 0
369 9 2.165 156 1 0
370 7 1.682 140 1 0
371 8 1.523 140 1 0
372 7 1.649 137 1 0
373 9 2.588 160 1 0
374 4 0.796 119 1 0
375 6 1.979 142 1 0
376 8 2.354 149 1 0
377 6 1.718 140 1 0
378 7 2.084 147 1 0
379 7 2.220 147 1 0
380 7 2.219 140 1 0
381 9 2.420 145 1 0
382 6 1.338 NA 1 0
383 8 2.090 145 1 0
384 8 1.562 140 1 0
385 9 2.650 161 1 0
386 8 1.429 146 1 0
387 8 1.675 135 1 0
388 8 2.069 137 1 0
389 6 NA 132 1 0
390 6 1.348 135 1 0
391 9 1.773 149 1 0
392 7 1.905 147 1 0
393 6 1.431 130 1 0
394 9 NA 164 1 0
395 9 2.135 149 1 0
396 6 1.527 133 1 0
397 8 NA 161 1 0
398 9 2.301 149 1 0
399 9 NA 163 1 0
400 8 1.759 135 1 0
401 6 NA 122 1 0
402 9 2.571 154 1 0
403 7 2.046 142 1 0
404 9 2.893 164 1 0
405 6 1.713 128 1 0
406 6 1.624 131 1 0
407 8 2.631 150 1 0
408 5 1.819 135 1 0
409 7 1.658 135 1 0
410 7 2.158 136 1 0
411 4 1.789 132 1 0
412 8 2.503 160 1 0
413 7 1.165 119 1 0
414 9 2.230 155 1 0
415 9 1.716 141 1 0
416 7 1.790 136 1 0
417 9 2.717 156 1 0
418 7 1.796 140 1 0
419 9 1.953 147 1 1
420 9 2.119 145 1 0
421 6 1.666 132 1 0
422 6 1.826 133 1 0
423 9 2.871 165 1 0
424 6 2.262 146 1 0
425 6 2.104 144 1 0
426 9 2.973 151 1 0
427 5 1.971 147 1 0
428 7 1.920 NA 1 0
429 9 NA 152 1 0
430 5 1.808 141 1 0
431 9 2.042 157 1 0
432 6 NA 126 1 0
433 9 3.681 173 1 0
434 8 1.991 151 1 0
435 8 1.897 141 1 0
436 8 2.016 NA 1 0
437 7 1.612 144 1 0
438 8 2.681 NA 1 0
439 8 2.010 140 1 0
440 8 1.744 133 1 0
441 9 2.076 154 1 0
442 8 2.435 151 1 0
443 8 2.303 145 1 0
444 9 2.246 161 1 0
445 9 3.239 165 1 0
446 9 2.457 156 1 0
447 7 2.056 137 1 0
448 8 2.226 145 1 0
449 9 2.833 156 1 0
450 6 1.715 NA 1 0
451 8 2.631 150 1 0
452 7 2.550 142 1 0
453 9 2.803 151 1 0
454 9 2.923 163 1 0
455 8 2.094 146 1 0
456 9 1.855 152 1 0
457 7 2.135 142 1 0
458 5 1.930 130 1 0
459 5 1.359 128 1 0
460 6 1.699 137 1 0
461 8 2.500 145 1 0
462 5 1.514 132 1 0
463 7 2.535 151 1 0
464 8 1.624 135 1 0
465 9 2.798 157 1 0
466 6 NA 135 1 0
467 9 1.869 145 1 0
468 4 1.004 122 1 0
469 6 NA 126 1 0
470 7 1.826 NA 1 0
471 8 1.657 142 1 0
472 5 2.115 127 1 0
473 11 2.884 175 1 0
474 10 2.328 163 1 0
475 14 3.381 160 1 0
476 11 NA 169 1 0
477 10 1.811 145 1 0
478 11 2.524 163 1 0
479 14 3.741 174 1 0
480 13 4.336 177 1 0
481 14 4.842 183 1 0
482 12 4.550 180 1 0
483 10 2.561 157 1 0
484 10 2.481 155 1 0
485 10 3.203 168 1 0
486 13 3.549 173 1 0
487 11 3.222 183 1 0
488 10 3.111 168 1 0
489 10 NA 160 1 0
490 10 2.246 154 1 0
491 10 1.937 157 1 0
492 10 2.646 152 1 0
493 11 2.957 164 1 0
494 11 4.007 170 1 0
495 10 3.251 168 1 0
496 13 4.305 NA 1 0
497 13 3.906 170 1 0
498 11 3.583 170 1 0
499 14 3.436 NA 1 0
500 11 3.058 155 1 0
501 10 3.007 157 1 0
502 10 3.489 169 1 0
503 14 4.683 174 1 0
504 10 2.352 156 1 0
505 11 3.108 164 1 0
506 13 3.994 170 1 0
507 12 NA 174 1 0
508 10 2.592 165 1 0
509 13 3.193 178 1 0
510 11 1.694 152 1 1
511 14 3.957 183 1 1
512 13 4.789 175 1 1
513 11 3.515 171 1 0
514 10 NA 166 1 0
515 11 2.463 164 1 0
516 11 3.111 171 1 0
517 10 2.094 149 1 0
518 11 3.977 179 1 0
519 10 3.354 160 1 0
520 13 3.887 171 1 0
521 11 NA 164 1 0
522 11 3.845 174 1 0
523 12 2.971 164 1 0
524 11 2.417 159 1 0
525 14 4.273 184 1 0
526 13 2.976 166 1 0
527 11 4.065 169 1 0
528 11 3.596 173 1 0
529 10 2.608 168 1 0
530 10 3.795 174 1 0
531 10 2.545 165 1 0
532 11 2.993 169 1 0
533 13 NA 173 1 1
534 10 2.855 164 1 0
535 11 2.988 178 1 0
536 11 2.498 152 1 0
537 11 2.887 159 1 0
538 11 3.425 166 1 0
539 10 2.696 168 1 0
540 14 4.309 175 1 1
541 11 4.593 175 1 0
542 14 4.111 180 1 0
543 12 1.916 154 1 0
544 10 1.858 147 1 0
545 10 3.350 175 1 0
546 10 2.901 151 1 0
547 12 2.241 163 1 0
548 13 4.225 188 1 0
549 12 NA 178 1 0
550 11 4.073 170 1 0
551 12 4.080 164 1 0
552 12 4.411 173 1 0
553 12 3.791 174 1 0
554 13 NA 171 1 0
555 11 2.465 152 1 0
556 12 3.343 173 1 1
557 10 3.200 165 1 0
558 12 2.913 163 1 0
559 13 4.877 185 1 0
560 12 3.279 179 1 0
561 10 NA 168 1 0
562 10 NA 133 1 0
563 12 3.751 183 1 1
564 10 2.758 166 1 0
565 10 2.201 154 1 0
566 10 1.858 150 1 0
567 10 1.665 145 1 0
568 12 4.073 174 1 0
569 13 4.448 175 1 0
570 13 3.984 180 1 0
571 12 2.304 NA 1 1
572 14 3.680 170 1 0
573 12 3.692 170 1 0
574 10 4.591 178 1 0
575 10 2.216 155 1 0
576 11 3.247 166 1 0
577 11 4.324 171 1 0
578 11 3.206 161 1 0
579 14 3.585 178 1 0
580 12 4.720 182 1 0
581 13 5.083 188 1 0
582 10 3.498 173 1 1
583 10 2.364 155 1 0
584 10 2.341 155 1 0
585 12 NA 160 1 0
586 11 3.078 171 1 0
587 11 3.369 NA 1 0
588 12 3.529 NA 1 0
589 10 3.127 157 1 0
590 11 3.320 166 1 0
591 11 2.123 165 1 0
592 14 NA 178 1 0
593 11 3.847 168 1 0
594 12 3.924 173 1 0
595 10 2.132 150 1 0
596 12 2.752 174 1 0
597 10 3.456 160 1 0
598 10 3.329 173 1 0
599 14 4.271 NA 1 0
600 12 3.530 163 1 0
601 11 2.928 166 1 0
602 12 2.332 145 1 0
603 14 2.276 168 1 1
604 10 3.110 164 1 0
605 11 2.894 NA 1 0
606 11 4.637 183 1 1
607 12 4.831 180 1 0
608 11 2.812 155 1 0
609 13 4.232 179 1 0
610 10 2.770 157 1 0
611 10 3.090 165 1 0
612 13 2.531 155 1 0
613 12 2.822 177 1 0
614 12 2.935 166 1 0
615 11 2.387 154 1 0
616 12 2.499 165 1 0
617 11 NA 170 1 0
618 11 3.280 168 1 0
619 11 2.659 163 1 0
620 12 4.203 NA 1 0
621 14 3.806 173 1 0
622 11 3.339 174 1 1
623 10 2.391 151 1 0
624 13 4.045 175 1 1
625 14 4.763 173 1 1
626 10 2.100 147 1 0
627 11 2.785 175 1 0
628 15 4.284 178 1 0
629 15 NA 180 1 1
630 19 5.102 183 1 0
631 16 3.688 173 1 1
632 17 4.429 178 1 0
633 15 4.279 171 1 0
634 15 4.500 178 1 0
635 17 NA 170 1 1
636 15 5.793 175 1 0
637 15 3.985 180 1 0
638 18 4.220 NA 1 0
639 17 NA 179 1 0
640 15 3.731 170 1 0
641 17 3.406 175 1 1
642 17 5.633 185 1 0
643 16 3.645 187 1 0
644 15 3.799 169 1 1
645 18 NA 170 1 1
646 16 4.070 177 1 1
647 17 NA 178 1 0
648 16 4.299 168 1 0
649 18 4.404 179 1 1
650 16 4.504 183 1 0
651 17 5.638 178 1 0
652 16 4.872 183 1 1
653 16 4.270 170 1 1
654 15 3.727 173 1 1
>
Using the continuous variable fev
, I've run both Kolmogorov-Smirnov and Shapiro-Wilk tests. However, their outcome seems to conflict with each.
One-sample Kolmogorov-Smirnov test
data: data1$fev
D = 0.049474, p-value = 0.09708
alternative hypothesis: two-sided
that let me lean for the normality assumption satisfaction, although in a very situation at limit, whereas the Shapiro-Wilk test doesn't:
Shapiro-Wilk normality test
data: data1$fev
W = 0.972, p-value = 0.000000001751
How do you usually decide which test is the best to accept normality assumption? Which test or expedient do you refer to?