5

The distribution $f(x) \propto (1-x^2)^{n/2}$ for $-1 \leq x \leq 1$

Stephan Kolassa
  • 95,027
  • 13
  • 197
  • 357
Sextus Empiricus
  • 43,080
  • 1
  • 72
  • 161

2 Answers2

3

This distribution is a scaled and shifted beta distribution. This can be seen by rewriting $t=0.5+0.5x$ or $x = 2t-1$ such that $1-x^2 = 4 t(1-t)$

Sextus Empiricus
  • 43,080
  • 1
  • 72
  • 161
3

It is known as a Power semi-circle distribution with pdf $f(x)$:

$$f(x) = \frac{1}{\sqrt{\pi }}\frac{\Gamma (\theta +2) }{ \Gamma \left(\theta +\frac{3}{2}\right)} \sqrt{1-x^2}^{2 \theta +1} \quad \quad \text{for } -1 < x < 1$$

... where shape parameter $\theta > -\frac{3}{2}$, and where your parameter $n = 2 \theta + 1$.

enter image description here

It nests a number of known distributions including:

  • ArcSine(-1,1) $\quad$ if $\theta = -1$
  • Uniform(-1,1) $\quad$ if $\theta = -\frac12$
  • Semicircle(-1,1) $\quad$ if $\theta = 0$
  • Epanechnikov kernel $\quad$ if $\theta = \frac12$
  • Bi-weight kernel $\quad$ if $\theta = \frac32$
  • Tri-weight kernel $\quad$ if $\theta = \frac52$

A reference is:

Kingman, J. F. C. (1963), Random walks with spherical symmetry, Acta Mathematica, 109(1), 11-53.

wolfies
  • 6,963
  • 1
  • 22
  • 27