I just learned about bootstrapping as a method for dealing with small samples (n<30), which is a major issue with my bioarchaeological data. Here is my code and output for bootstrapping a sample proportion (n=3) to get a 95% CI. Did I do it right?
> CrSA<-c(0,1,1)<br>
> CrSAmean<- function(x, d) {return(mean(x[d])) }
> boot(data=CrSA, statistic=CrSAmean, R=500)
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = CrSA, statistic = CrSAmean, R = 500)
Bootstrap Statistics :
original bias std. error
t1* 0.6666667 -0.01533333 0.2807337
> boot.mean<-boot(data=CrSA,statistic=CrSAmean,R=500)
> boot.ci(boot.out=boot.mean,type="norm")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 500 bootstrap replicates
CALL :
boot.ci(boot.out = boot.mean, type = "norm")
Intervals :
Level Normal
95% ( 0.1284, 1.2116 )
Calculations and Intervals on Original Scale