0

N has probability mass function: $p_o = p_1 =0$ and $p_k = \frac{1}{(e^1-2)k!}$ for $k=2,3,4,...$ I Solved for the pgf of N and got $G(t) = \frac{e^t}{e^1-2}$

How do I calculate $E[N^2 | N>2]$?

whuber
  • 281,159
  • 54
  • 637
  • 1,101

1 Answers1

1

\begin{align} \mathbb{E}[N^2 | N > 2] &= \sum_{n=0}^\infty n^2 Pr(N=n|N>2) \\ &= \frac1{1-P(N\le 2)}\sum_{n=3}^\infty n^2\cdot \frac{1}{(e-2)n!} \\ &=\frac1{1-\frac1{2(e-2)}}\sum_{n=3}^\infty n\cdot \frac{1}{(e-2)(n-1)!} \\ &= \frac1{1-\frac1{2(e-2)}}\sum_{n=3}^\infty (n-1+1)\cdot \frac{1}{(e-2)(n-1)!} \\ &=\frac{2}{2(e-2)-1} \left(\sum_{n=3}^\infty \frac{1}{(n-2)!} + \sum_{n=3}^\infty \frac{1}{(n-1)!} \right) \end{align}

I am leaving the last step for you to simplify.

Siong Thye Goh
  • 6,431
  • 3
  • 17
  • 28