What is the correct way to report the results of model averaging? I’m using MuMin in R, results include a p-value. It’s also possible to get the importance of each predictor. Example results below.
What exactly is the difference and how do I interpret this? What does it mean, for example, if a predictor is important but not significant, or vice versa? And which is best to report?
Example results below from dredge()
with a mixed effects model fit in lme4
:
Model-averaged coefficients:
(full average)
Estimate Std. Error Adjusted SE z value Pr(>|z|)
(Intercept) 0.56610 0.24118 0.24233 2.336 0.019491 *
Var1 -0.91115 0.23856 0.23968 3.802 0.000144 ***
Var5 0.08168 0.23656 0.23769 0.344 0.731132
Var7 0.22617 0.31847 0.31918 0.709 0.478575
Var8 0.11879 0.18559 0.18635 0.637 0.523808
Var3 -1.02662 0.37856 0.38034 2.699 0.006950 **
Var2 -0.14402 0.23801 0.23868 0.603 0.546239
Var4 -1.03832 0.34015 0.34174 3.038 0.002379 **
Var1:Var8 0.37484 0.28242 0.28289 1.325 0.185163
Var1:Var3 -0.92612 0.49060 0.49291 1.879 0.060262 .
Var5:Var4 0.65352 0.25435 0.25557 2.557 0.010556 *
Var3:Var4 -1.48070 0.66730 0.67048 2.208 0.027215 *
Var9 -0.05323 0.14171 0.14212 0.375 0.707990
Var1:Var9 -0.13693 0.24729 0.24749 0.553 0.580071
Var3:Var2 0.17222 0.51119 0.51240 0.336 0.736796
Var8:Var2 -0.01018 0.07237 0.07260 0.140 0.888497
Var10 -0.01141 0.08486 0.08519 0.134 0.893453
Var10:Var7 0.02179 0.11146 0.11162 0.195 0.845195
> as.data.frame(importance(full.model.avg))
importance(full.model.avg)
Var1 1.00000000
Var5 1.00000000
Var3 1.00000000
Var4 1.00000000
Var1:Var3 1.00000000
Var5:Var4 1.00000000
Var3:Var4 1.00000000
Var8 0.73030645
Var1:Var8 0.73030645
Var2 0.70616912
Var7 0.49817802
Var9 0.26969355
Var1:Var9 0.26969355
Var3:Var2 0.18443111
Var10 0.15009082
Var8:Var2 0.05819205
Var10:Var7 0.05183653