I am wondering why the mean of my model is so high leading to a high forecast of the time series data. I included a linear regression in the external regressors as there is a clear downward trend.
I think I may have specified the linear regression incorrectly in the external regressor. Should I use instead seq(112,1,by=-1)
as there is a negative correlation? This gives me a mean in my model of 3 which seems more reasonable based on previous values.
Model specification using rugarch
:
set.seed(1)
garchspec_ged = ugarchspec(variance.model=list(model="sGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(0,0), external.regressors = matrix(seq(1,112,1)),
distribution.model="ged")
garchfit_ged <- ugarchfit(data = yts, spec = garchspec_ged)
summary output:
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(0,0,0)
Distribution : ged
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 17.58611 1.149166 15.30337 0.000000
mxreg1 -0.12230 0.014254 -8.57981 0.000000
omega 0.67124 0.760973 0.88208 0.377736
alpha1 0.08434 0.053123 1.58763 0.112369
beta1 0.87592 0.067514 12.97392 0.000000
shape 2.19405 0.493805 4.44316 0.000009
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 17.58611 1.713427 10.2637 0.000000
mxreg1 -0.12230 0.020444 -5.9822 0.000000
omega 0.67124 0.548106 1.2246 0.220709
alpha1 0.08434 0.047150 1.7888 0.073651
beta1 0.87592 0.052031 16.8344 0.000000
shape 2.19405 0.529629 4.1426 0.000034
LogLikelihood : -337.3251
Information Criteria
------------------------------------
Akaike 6.1308
Bayes 6.2764
Shibata 6.1254
Hannan-Quinn 6.1899
Weighted Ljung-Box Test on Standardized Residuals
------------------------------------
statistic p-value
Lag[1] 0.4786 0.4890
Lag[2*(p+q)+(p+q)-1][2] 0.5086 0.6896
Lag[4*(p+q)+(p+q)-1][5] 0.7354 0.9160
d.o.f=0
H0 : No serial correlation
Weighted Ljung-Box Test on Standardized Squared Residuals
------------------------------------
statistic p-value
Lag[1] 0.01878 0.8910
Lag[2*(p+q)+(p+q)-1][5] 0.85125 0.8923
Lag[4*(p+q)+(p+q)-1][9] 3.64610 0.6493
d.o.f=2
Weighted ARCH LM Tests
------------------------------------
Statistic Shape Scale P-Value
ARCH Lag[3] 0.08649 0.500 2.000 0.7687
ARCH Lag[5] 1.61721 1.440 1.667 0.5620
ARCH Lag[7] 3.16708 2.315 1.543 0.4826
Nyblom stability test
------------------------------------
Joint Statistic: 1.2853
Individual Statistics:
mu 0.06942
mxreg1 0.09061
omega 0.04553
alpha1 0.19344
beta1 0.12067
shape 0.11941
Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.49 1.68 2.12
Individual Statistic: 0.35 0.47 0.75
Sign Bias Test
------------------------------------
Adjusted Pearson Goodness-of-Fit Test:
------------------------------------
group statistic p-value(g-1)
1 20 27.64 0.09055
2 30 44.43 0.03341
3 40 50.86 0.09675
4 50 53.18 0.31646
Forecast of series:
garchfit_ged.fcst = ugarchforecast(garchfit_ged, n.ahead=12)
plot(garchfit_ged.fcst, which = 1)
Forecast with model including seq(112,1,by=-1)
in the regressor instead: