0

Dataset:

structure(list(V1 = c(1.43359910241166, 0.411971077467806, 0.236361845246534, 
-0.289263426819727, -1.23202861459847, -0.738796384986188, 0.200420172968439, 
1.55763841132305, 0.306848974278087, -1.06336757529454, 0.208462982445177, 
-0.161933544137143, -0.529226737265933, 1.06311471300635, 0.154281146875831, 
0.609577869238014, -0.13720552696616, 0.920650581183744, 1.18282854178987, 
-0.792945405521446, -0.609722647650392, -0.21688852962299, -3.06426186175807, 
0.5498848363865), V2 = c(-0.322161064448354, -0.203202315321523, 
-1.37681357972322, -2.09183896169083, -1.73416522569493, -0.167163678879473, 
-0.496644140621754, -0.378640254832213, 1.71897857982319, 0.987886990249993, 
-0.464176577243306, 0.313599912560739, 0.279305189424942, 0.621879051693468, 
-1.35413705469938, -0.904307866112488, 0.563960402008738, 0.942178870082166, 
1.05504527675313, 1.72684177309, 0.487583880103759, 0.366982237506534, 
0.341207392409481, 0.0878011635613361), V3 = c(-3.06259779143185, 
0.113156471002083, -0.596111339640452, -0.0549465535711572, -0.941898864240695, 
-0.653015082018507, -0.169956676284042, -0.35411953808696, 0.713862293279259, 
1.20019049753438, 0.295042002436139, -0.248609439893179, 1.9312167684667, 
0.674670687298312, 0.224140747830105, -0.59349261052001, 0.0558808922143246, 
0.749007982254512, 1.04584894162381, 0.280651184742914, -0.313568542992107, 
-1.54267082673779, 0.397265080266878, 0.850053716467332), V4 = c(-2.72697312636474, 
0.851743869193346, -0.0599187094978506, 0.341978048955579, -0.484015693411596, 
-0.131475393689722, -0.021866557862478, -1.8191792655517, 1.74883985589495, 
-0.446343374015597, 0.0107633789594956, 0.55528371030783, 0.31132242799237, 
0.0710046563366782, 0.701388784100771, 1.56870481640847, -0.841113890934613, 
-0.881987858407386, 1.37693978208629, -0.488560120797117, 0.366895195216852, 
0.0627972059134885, -0.655416452787133, 0.589188711953821), V5 = c(-1.79836984688233, 
0.50295466271361, -1.17227869532777, 0.661412408202374, 0.853890060320874, 
0.349725611664228, -0.308069063888987, -0.433246608902138, -0.178767449882736, 
1.34125510863996, 0.206474174580616, -0.657831069822233, 0.215632332747088, 
0.573672331330443, -0.202823754124207, 0.609758501891791, 0.222044482387977, 
2.56037433110525, -1.29345283990688, 0.174550400877521, -0.174265216769768, 
0.55419775558349, -0.458225457879011, -2.14861215865916), V6 = c(-0.18026818728965, 
-0.480816154309526, -0.50256960223903, -1.31874854057412, -0.896086924318379, 
-1.79382217103909, -1.60213450587948, -0.481119812364401, 0.377075792056211, 
1.34981730088023, 0.0611706096060544, 0.83874651540465, 0.58899516399665, 
1.24066391945654, -1.08080170411743, 0.597620326597847, -1.21365483260366, 
0.230893469563153, -0.576677068566099, 1.31703258659203, 0.35136844419016, 
0.925208426922233, 1.73348977742475, 0.514617170610343), V7 = c(0.692646184527114, 
1.64958468445801, -0.722861261417701, -0.411292490473929, -1.73926867251488, 
0.479847732965793, 0.224291785874008, -0.650661070391403, -0.20779505689401, 
-0.900990363217965, 0.712570690351891, 0.0291624484927884, 0.613871305452367, 
-0.901767959624604, -0.184130922600279, 2.60941994159236, 0.0144701586285878, 
1.00941096184201, -1.07148389565784, -0.439790917550134, -0.786567592396622, 
0.926243735906836, -1.39392614240757, 0.449016715055174), V8 = c(-0.218730876718155, 
0.279536175230915, -0.860839531512879, 1.62382620633742, -0.656202640703168, 
-3.05801703213563, 0.243884147081474, 0.926579301241956, 0.58184138659717, 
-0.0814078168437784, -0.0668035158044736, 0.00153834639170001, 
0.806767895958209, 0.834326360087515, -0.0790896439523125, 0.07028192584928, 
-0.619273530317688, 1.07556660504801, -1.13473924521572, 0.668145147063421, 
0.758090513962191, 0.456430947715887, -1.73160959029873, 0.179898464937389
), V9 = c(2.56974590352874, -0.263155790779132, 0.646658371629822, 
-0.752843366448987, 0.200047856906594, 0.659371008337854, 1.24620285734473, 
0.94634794321528, -1.3304334794271, 1.33090401796431, -0.819840444239054, 
0.272969704571894, -0.486961950780986, 0.169639870524667, -0.451658048721127, 
-1.04537018765646, -1.16107891054576, -1.20995090654021, -0.839823653138378, 
0.62253221198192, 0.622634591405887, -0.547608828939565, 0.786557248787584, 
-1.16488601898254), V10 = c(-2.26412916115509, 0.67348993363598, 
-0.342027192999345, 0.249815496496033, 0.30352488488975, -0.744451635640458, 
1.58487417838063, -1.01570448604582, -0.541105970352036, 1.13647671257197, 
-0.54886598448313, -0.962789161396563, -0.538065955333129, 0.0781727823942247, 
0.0970193660300894, 1.18927210039089, -0.6957686086705, -0.386785336508124, 
-0.35257548033064, 2.31937096293864, -0.549132531058022, -0.0974568592721698, 
1.43853645612397, -0.0316945106071529), V11 = c(-1.86095070927053, 
0.573330283491408, -1.03183858717977, -1.83745190916475, -0.077180684913356, 
-0.94533768863225, -0.641638632478328, 0.154349543995556, 1.89664953662371, 
1.3494700201932, 1.04343452008192, 1.03948878970461, 0.394740150081754, 
1.24869842481551, 0.33270007318232, 0.373677276693529, 0.670774298645023, 
-0.0191045174843475, 0.0901593335518681, -0.813757209813031, 
-0.527741614949631, -1.55637393322463, -0.0817683516977811, 0.225671587747989
), V12 = c(0.235155165117673, 0.0334071835637513, 0.141983465568844, 
0.441692874434554, 0.0707526888389656, 0.332161357520943, 0.0735800395703528, 
-0.281305763416249, 0.16538364649173, -1.15487983901285, 1.56899928098857, 
-0.567750194144175, 0.541218236160627, 1.48159680904495, -0.568523352759803, 
-0.0545712227404042, -2.93340050534491, 0.662421496450859, 1.11729205722267, 
-0.581175560009803, 0.792548304722282, 0.955149345977461, -0.821090667653583, 
-1.65064484659245), V13 = c(-1.97412125867671, 0.44572205242864, 
-0.274712915255066, -1.44692140049933, -1.18035700830368, -0.260286573948736, 
-0.95815595797825, -0.242760674716397, 0.477953228907608, 0.992878959448502, 
0.48518262700317, -0.882424015844636, 2.03856721097186, 0.782640940939034, 
0.00789969362112054, -0.295894328060507, 1.27922468162261, 0.51472928905797, 
0.0447383908218823, 0.165638463053774, -0.263332324321804, -1.15204704327981, 
-0.258342890933598, 1.95418085394235), V14 = c(-0.181993529177506, 
1.39403983793056, -0.152733307069606, -1.52421030170283, -0.924924418962197, 
-0.364387222675804, 1.10283509955152, 0.0727783277608945, -1.77522562543095, 
1.08664918075833, -1.04803884297856, -0.940631906527986, 1.12617755875177, 
1.21705368328955, -0.279102677856877, 0.343713803473868, 1.26542530994074, 
-0.774396836280874, 0.417125600747737, 1.49096714826284, 0.284166748008431, 
-1.53295609357739, 0.105608954195959, -0.407940490431605), V15 = c(-1.46474265513464, 
1.19486941463858, 0.244933071673175, -0.459011700723317, 0.241718140420906, 
0.282959623977014, 0.00585677416957126, -2.03400384857495, 0.537918956631718, 
-1.04030075327707, -0.557219563096931, -0.252427064540924, 0.547956268292219, 
-0.526158422645334, 0.251554548033225, -0.745912076395139, -0.0351666299711204, 
1.15204026955591, 0.842246979246097, 1.52268303136091, -1.90156582122334, 
-0.142035061237368, 0.385224459566802, 1.94858205925399), V16 = c(0.828548104520814, 
0.713189024971904, 0.774573684318552, -0.425568343697551, 0.259608074896051, 
-1.22029633555545, -0.344755278537263, 0.973749897026122, -0.474553098183039, 
0.0257155566445092, -0.476287023663646, 0.974669054546108, -1.77164686907544, 
1.56028342699847, 1.24959541751606, -0.574201649578301, 1.2099741843225, 
-0.0750690376790856, -0.0110241372862062, -0.984530244128971, 
-2.52086075001167, 0.0287667805602271, 0.731343831738835, -0.451224270663529
), V17 = c(-0.681074029216176, -0.0390433509889875, 0.0328512523391066, 
1.12428796011696, 0.176765286103444, -0.222850967042728, 0.988520019729737, 
2.09179105565111, 0.116819106946508, 0.51447781508645, 1.87648378755979, 
-1.08036997332246, -0.418517756914466, 0.291253915397003, -0.355756145391065, 
0.874359244531183, -2.35192438381252, -0.200559130397419, -1.29305021151605, 
-0.216777649470054, -1.43207151780606, -0.392317470556723, 0.447601162558867, 
0.149101980414553), V18 = c(-1.96475300593026, 0.422711683040055, 
-1.12996029903421, -2.33587910613298, 0.179352498545959, -0.600058127770143, 
-1.35077156778998, -0.727365308346169, 1.43052873254504, 1.07048786910024, 
1.15649152054786, 0.702163956193049, 0.599458156020645, 0.489172517239038, 
0.957116387643539, 0.335186798948586, -0.598777825023964, 0.10012893280699, 
0.0822063408722808, 0.393896776121708, 0.968441995451939, -0.625513747288306, 
-0.437871585012806, 0.883606407251895), V19 = c(0.203243289070699, 
0.206783154660488, 0.0730205054389099, 0.151752499129077, 0.339065300597841, 
0.198750153846351, 0.246574181097875, 0.219716854159337, 0.112571755773366, 
0.108437458425644, 0.159923853880819, 0.198217376539615, 1.27794667790059, 
0.0628191359027579, -0.023668700184257, 0.0103470645871769, -4.55192891533295, 
0.0932248108210876, 0.0372915017676821, 0.103290843005291, 0.1485089149749, 
0.167015138770557, 0.258108289841612, 0.198988855325523), V20 = c(-0.6885610185506, 
0.215106818871655, -1.26229703607397, -1.15415874394993, -0.770942786330788, 
-1.07811513531511, -1.34581518035362, 0.296281823344214, -0.525449013409778, 
1.52659228597052, 1.66011376586839, 0.204981756466606, 2.25710524990656, 
0.850893107617607, 0.181598239123184, 0.0790398588000734, -0.0665218787774753, 
0.411298611581292, 0.0839458342094344, -0.122405563089466, -1.6897393933796, 
1.24061257187769, -0.157685318761091, -0.145878855645788), outcome_var = c(-3, 
4, 1, -1, -1, -3, -1, -3, 3, 2, -2, -3, 1, 0, 0, 0, 3, 0, 2, 
2, 1, -3, 1, 0)), class = "data.frame", row.names = c(NA, -24L
)) 

What is the best cross-validation strategy on this dataset when looking for the best model selection. I tried the leave-one-out cross-validation but it was hard to implement. The validation set approach, leave-one-out cross-validation, k-fold cross-validation, train-validation-test set approach, and nested k-fold cross-validation(What k value) are all known options to me, but I have a hard time making a good selection?

  • Hi, welcome to CV! I am not sure that I entirely understand your question. Do you want to use cross validation to partition your data into a training, validation and test set? – Stochastic Jun 06 '20 at 15:36
  • Not really, im just wondering what is the best way to make a selection between before named options. I know how they work, broadly, but I do not know in this case what the best option is for model selection – NotRikBurgers Jun 06 '20 at 15:43
  • What type of model are you planning on fitting? – Stochastic Jun 06 '20 at 18:31

0 Answers0