I have the following 2 questions about log-likelihood computation in semi-supervised Naive Bayes.
I have read on several documents online that, in every EM iteration of the semi-supervised Naive Bayes, log-likelihood is positive. Is this always true? In my text classification problem I am getting the following log-likelihoods:
previous loglh current loglh diff M: #iteration 2 -36268.3096003 -> -89209.1178494 (-52940.8082491 ) M: #iteration 3 -89209.1178494 -> -34633.3568107 ( 54575.7610387 ) M: #iteration 4 -34633.3568107 -> -38624.6148215 ( -3991.25801086 ) M: #iteration 5 -38624.6148215 -> -32929.3134083 ( 5695.30141321 ) M: #iteration 6 -32929.3134083 -> -36901.1324845 ( -3971.81907618 ) M: #iteration 7 -36901.1324845 -> -33105.8190786 ( 3795.31340593 ) M: #iteration 8 -33105.8190786 -> -35887.8113077 ( -2781.99222912 ) M: #iteration 9 -35887.8113077 -> -33249.0299832 ( 2638.78132451 ) M: #iteration 10 -33249.0299832 -> -35094.6821847 ( -1845.65220157 ) M: #iteration 11 -35094.6821847 -> -33459.5111152 ( 1635.17106958 ) M: #iteration 12 -33459.5111152 -> -34587.8807293 ( -1128.36961412 ) M: #iteration 13 -34587.8807293 -> -33661.1108938 ( 926.769835475 ) M: #iteration 14 -33661.1108938 -> -34252.017022 ( -590.906128148 ) M: #iteration 15 -34252.017022 -> -33804.2917848 ( 447.72523711 ) M: #iteration 16 -33804.2917848 -> -34025.8914036 ( -221.599618742 ) M: #iteration 17 -34025.8914036 -> -33851.2573206 ( 174.634083003 ) M: #iteration 18 -33851.2573206 -> -33911.2395915 ( -59.9822709405) M: #iteration 19 -33911.2395915 -> -33871.2589912 ( 39.980600331 ) M: #iteration 20 -33871.2589912 -> -33843.8767245 ( 27.3822666886)
As you can see, there are some iterations in which it improves, and others in which it degrades. This is happening alternatively, which I find really strange...
If $L(U)$ is the number of labeled (unlabeled) docs, $C$ the number of classes and $\text{class}_{d_{i}}$ is the class of the labeled document $i$, I compute the log-likelihood as the sum of the 2 following likelihoods below. Is this computation correct? $$ \begin{aligned} \text{loglik}(h_{labeled})&= \sum_{i=1}^{L} \log( \text{prob}(\text{class}_{d_{i}}) * \text{prob}(d_{i}| \text{class}_{d_{i}})) \\ \text{loglik}(h_{unlabeled})&= \sum_{i=1}^{U} \sum_{j=1}^{C}\log( \text{prob}(\text{class}_{j}) * \text{prob}(d_{i}| \text{class}_{j})) \end{aligned} $$