You have random variables $X_1,\dots,X_n$ that are, given that $M=\mu$ and $\Sigma^2=\sigma^2$, conditionally independent and identically distributed as $\mathrm{N}(\mu,\sigma^2)$.
You believe that a priori $M$ and $\Sigma^2$ are independent with $M\sim\mathrm{N}(a,b^2)$ and $\Sigma\sim\mathrm{IG}(r,t)$.
(please, check the definition of the Inverse-Gamma distribution).
Define $X=(X_1,\dots,X_n)$ and $x=(x_1,\dots,x_n)$. Also, define $\bar{x}=\sum_{i=1}^n x_i/n$ and $s^2=\sum_{i=1}^n (x_i-\bar{x})^2/n$.
The likelihood is
$$
f_{X\mid M,\Sigma^2}(x\mid\mu,\sigma^2) = \prod_{i=1}^n f_{X_i\mid M,\Sigma^2}(x_i\mid\mu,\sigma^2)
$$
$$
= (2\pi)^{-n/2} \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2\right) \, .
$$
But
$$
\sum_{i=1}^n (x_i-\mu)^2 = \sum_{i=1}^n (x_i-\bar{x}+\bar{x}-\mu)^2
$$
$$
= \sum_{i=1}^n (x_i-\bar{x})^2 +2 (\bar{x}-\mu)\sum_{i=1}^n (x_i-\bar{x}) + \sum_{i=1}^n (\bar{x}-\mu)^2 \, . \quad (*)
$$
The middle term in $(*)$ is zero (check it out), giving us the useful decomposition
$$
\sum_{i=1}^n (x_i-\mu)^2 = n(\mu-\bar{x})^2 + ns^2 \, ,
$$
which allows us to rewrite the likelihood in terms of the sufficient statistics $\bar{x}$ and $s^2$ as
$$
f_{X\mid M,\Sigma^2}(x\mid\mu,\sigma^2) = (2\pi)^{-n/2} \sigma^{-n} \exp\left(-\frac{n}{2\sigma^2}\left((\mu-\bar{x})^2 + s^2\right)\right) \, .
$$
Hence, using the most beautiful theorem ever, the posterior density is
$$
f_{M,\Sigma^2\mid X}(\mu,\sigma^2\mid x) \propto f_{X\mid M,\Sigma^2}(x\mid\mu,\sigma^2) f_M(\mu) f_{\Sigma^2}(\sigma^2)
$$
$$
\propto \sigma^{-n} \exp\left(-\frac{n}{2\sigma^2}\left((\mu-\bar{x})^2 + s^2\right)\right)
$$
$$
\times \exp\left(-\frac{1}{2b^2}(\mu-a)^2\right) (\sigma^2)^{-r-1} \exp\left(-\frac{t}{\sigma^2}\right) \, ,
$$
in which the $\propto$ symbol means proportionality up to factors that do not depend on $\mu$ and $\sigma^2$.
To compute the full conditionals, note that, by the product rule for densities, we have
$$
f_{M, \Sigma^2\mid X}(\mu,\sigma^2\mid x) = f_{M\mid\Sigma^2,X}(\mu\mid\sigma^2,x) f_{\Sigma^2\mid X}(\sigma^2\mid x) \, ,
$$
and hence
$$
f_{M\mid\Sigma^2,X}(\mu\mid\sigma^2,x) \propto f_{M,\Sigma^2\mid X}(\mu,\sigma^2\mid x) \, ,
$$
in which the $\propto$ symbol means proportionality up to factors that do not depend on $\mu$.
Therefore,
$$
f_{M\mid\Sigma^2,X}(\mu\mid\sigma^2,x) \propto \exp\left(-\frac{1}{2}\left(\frac{n}{\sigma^2}(\mu-\bar{x})^2 +\frac{1}{b^2}(\mu-a)^2\right)\right) \, .
$$
Completing the square, we have
$$
\frac{n}{\sigma^2}(\mu-\bar{x})^2 +\frac{1}{b^2}(\mu-a)^2 \propto \left(\frac{nb^2+\sigma^2}{\sigma^2 b^2}\;\;\right) \mu^2 - 2\mu\left(\frac{nb^2\bar{x}+\sigma^2a}{\sigma^2b^2}\;\;\right)
$$
$$
\propto \left(\frac{nb^2+\sigma^2}{\sigma^2 b^2}\;\;\right)\left(\mu - \frac{nb^2\bar{x}+\sigma^2a}{nb^2+\sigma^2}\;\;\right)^2 \, ,
$$
which gives you, by inspection, that
$$
M\mid\Sigma^2=\sigma^2,X=x \sim \mathrm{N}\left(\frac{nb^2\bar{x}+\sigma^2a}{nb^2+\sigma^2}\quad, \frac{\sigma^2 b^2}{nb^2+\sigma^2}\;\;\right) \, .
$$
Now we take a deep breath and do it mutatis mutandis for the other conditional.
$$
f_{\Sigma^2\mid M,X}(\sigma^2\mid \mu,x) \propto (\sigma^2)^{-n/2-r-1} \exp\left( -\frac{1}{\sigma^2}\left(\frac{n}{2}\left((\mu-\bar{x})^2 + s^2\right) + t \right)\right) \, ,
$$
which says that
$$
\Sigma^2\mid M=\mu,X=x \sim \mathrm{IG}\left( \frac{n}{2}+r, \frac{n}{2}\left((\mu-\bar{x})^2 + s^2\right) + t\right) \, .
$$