I tried to use Holt-Winters for forecasting, but it gives me negative values, but since these are demand quantities they cannot be negative.
mydataforecast2 <- forecast::forecast(mydataforecast, h=20, level= c(80,95),fan= FALSE, lambda = NULL)
mydataforecast2 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 Oct 2018 -8724.044 -50231.53 32783.45 -72204.27 54756.18 Nov 2018 3826.795 -39752.39 47405.98 -62821.82 70475.41 Dec 2018 -2935.782 -48817.20 42945.64 -73105.36 67233.80 Jan 2019 -2564.481 -50969.64 45840.67 -76593.78 71464.82 Feb 2019 1132.152 -50008.02 52272.32 -77079.99 79344.29 Mar 2019 12440.978 -41634.78 66516.73 -70260.75 95142.71 Apr 2019 -3240.720 -60441.94 53960.50 -90722.44 84241.00 May 2019 -6482.359 -66988.58 54023.86 -99018.63 86053.92 Jun 2019 -11312.368 -75293.34 52668.61 -109162.82 86538.09 Jul 2019 -15894.025 -83510.41 51722.37 -119304.37 87516.32 Aug 2019 -15200.354 -86604.45 56203.74 -124403.50 94002.79 Sep 2019 -12319.313 -87655.76 63017.14 -127536.47 102897.84 Oct 2019 -25837.357 -118762.44 67087.72 -167954.00 116279.29 Nov 2019 -13286.517 -109826.49 83253.45 -160931.66 134358.63 Dec 2019 -20049.094 -120359.89 80261.70 -173461.22 133363.03 Jan 2020 -19677.793 -123909.49 84553.91 -179086.42 139730.84 Feb 2020 -15981.160 -124278.21 92315.89 -181607.21 149644.89 Mar 2020 -4672.334 -117173.78 107829.11 -176728.45 167383.78 Apr 2020 -20354.033 -137193.79 96485.73 -199045.02 158336.96 May 2020 -23595.671 -144902.81 97711.47 -209118.93 161927.59
So I tried to fit it using BoxCox()
myretailfitted <- BoxCox(myretaildatats,lambda = 0)
myretaildataforecast <- HoltWinters(myretailfitted)
> myretaildataforecast2 <- forecast::forecast(myretaildataforecast, h=20, level= c(80,95),fan= FALSE, lambda = NULL)
myretaildataforecast2 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95 Oct 2018 7.604822 6.993493 8.216152 6.669875 8.539770 Nov 2018 8.549561 7.890697 9.208425 7.541916 9.557206 Dec 2018 8.133424 7.430231 8.836616 7.057984 9.208863 Jan 2019 8.061037 7.316149 8.805924 6.921830 9.200243 Feb 2019 8.152589 7.368220 8.936958 6.953000 9.352178 Mar 2019 8.444243 7.622287 9.266200 7.187169 9.701317 Apr 2019 7.218138 6.360240 8.076037 5.906095 8.530182 May 2019 7.129013 6.236618 8.021408 5.764213 8.493813 Jun 2019 6.896771 5.971165 7.822376 5.481179 8.312363 Jul 2019 6.594478 5.636812 7.552144 5.129854 8.059102 Aug 2019 7.076641 6.087954 8.065328 5.564575 8.588707 Sep 2019 7.389513 6.370750 8.408277 5.831449 8.947578 Oct 2019 6.507436 5.342285 7.672587 4.725491 8.289381 Nov 2019 7.452175 6.261395 8.642954 5.631035 9.273314 Dec 2019 7.036037 5.820170 8.251904 5.176529 8.895545 Jan 2020 6.963650 5.723202 8.204098 5.066549 8.860751 Feb 2020 7.055202 5.790652 8.319753 5.121239 8.989166 Mar 2020 7.346857 6.058654 8.635060 5.376721 9.316993 Apr 2020 6.120752 4.809324 7.432180 4.115095 8.126409 May 2020 6.031626 4.697377 7.365876 3.991068 8.072185
Now it gives me above results. How do I scale it back to my original data?