I'm using [lme4].
Data:
tree rep trayid survival
1 Ash 1 1 1
2 Ash 1 1 1
3 Ash 1 1 1
4 Ash 1 1 1
5 Ash 1 1 1
6 Ash 1 1 1
Model:
NPVcorrbinary.glmer <- glmer(survival ~ tree + (1|tree:trayid), data=NPV01Datacorr.data, family="binomial", nAGQ=25)
Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature, nAGQ = 25) ['glmerMod']
Family: binomial ( logit )
Formula: survival ~ tree + (1 | tree:trayid)
Data: NPV01Datacorr.data
AIC BIC logLik deviance df.resid
1081.4 1114.4 -533.7 1067.4 812
Scaled residuals:
Min 1Q Median 3Q Max
-1.2942 -0.7744 -0.5773 0.9108 1.7508
Random effects:
Groups Name Variance Std.Dev.
tree:trayid (Intercept) 0.01282 0.1132
Number of obs: 819, groups: tree:trayid, 36
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.1582 0.1850 -0.855 0.392390
treeBC3F3 0.6006 0.2638 2.277 0.022779 *
treeD54 -0.5170 0.2586 -2.000 0.045524 *
treeD58 -0.9438 0.2799 -3.372 0.000747 ***
treeEllis1 -0.3869 0.2613 -1.481 0.138708
treeQing 0.3817 0.2509 1.521 0.128177
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Question:
I'm trying to get the probability of mortality for each of the tree types.
> predict(NPVcorrbinary.glmer, data.frame(tree="Ash"), type="response")
Error in eval(expr, envir, enclos) : object 'trayid' not found