I have few experiments Type
and four products type (p,c,s,m). We express preference with binary variables p_f
, p_c
, p_s
andp_m
. (1) is the choice of the product and (0) mean that this product was not choosen.
stock_ex
is the interval percent stock exhaustion of all product. I want to analyse product preference.
This is my dataset
res=structure(list(Type = c("900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v1", "900-v1", "900-v1", "900-v1", "900-v1", "900-v1",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "900-v2",
"900-v2", "900-v2", "900-v2", "900-v2", "900-v2", "8800-v1",
"8800-v1", "8800-v1", "8800-v1", "8800-v1", "8800-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v1", "88-v1", "88-v1", "88-v1", "88-v1", "88-v1",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2", "88-v2", "88-v2", "88-v2", "88-v2",
"88-v2", "88-v2"), stock_ex = c("(0,10]", "(0,10]",
"(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(10,20]",
"(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]",
"(10,20]", "(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]",
"(20,30]", "(20,30]", "(20,30]", "(30,40]", "(30,40]", "(30,40]",
"(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]", "(40,50]",
"(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(40,50]", "(50,60]", "(50,60]", "(50,60]", "(50,60]",
"(50,60]", "(50,60]", "(50,60]", "(50,60]", "(60,70]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]",
"(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(80,90]", "(80,90]", "(80,90]", "(90,100]", "(90,100]",
"(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]",
"(90,100]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]",
"(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]",
"(0,10]", "(0,10]", "(0,10]", "(0,10]", "(10,20]", "(10,20]",
"(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]",
"(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]",
"(10,20]", "(10,20]", "(10,20]", "(20,30]", "(20,30]", "(20,30]",
"(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]",
"(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]",
"(20,30]", "(20,30]", "(30,40]", "(30,40]", "(30,40]", "(30,40]",
"(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]",
"(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]",
"(30,40]", "(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]",
"(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]",
"(50,60]", "(50,60]", "(50,60]", "(50,60]", "(60,70]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]",
"(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]",
"(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(0,10]",
"(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]",
"(0,10]", "(0,10]", "(10,20]", "(10,20]", "(10,20]", "(10,20]",
"(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]",
"(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]",
"(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]", "(30,40]",
"(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]",
"(30,40]", "(30,40]", "(30,40]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(40,50]", "(50,60]", "(50,60]", "(50,60]", "(50,60]",
"(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]",
"(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(60,70]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(70,80]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]",
"(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(0,10]",
"(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]",
"(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]", "(0,10]",
"(0,10]", "(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]",
"(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]",
"(10,20]", "(10,20]", "(10,20]", "(10,20]", "(10,20]", "(20,30]",
"(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]",
"(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]", "(20,30]",
"(20,30]", "(20,30]", "(20,30]", "(20,30]", "(30,40]", "(30,40]",
"(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]",
"(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]", "(30,40]",
"(30,40]", "(30,40]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]", "(40,50]",
"(40,50]", "(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]",
"(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]",
"(50,60]", "(50,60]", "(50,60]", "(50,60]", "(50,60]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]", "(60,70]",
"(60,70]", "(60,70]", "(60,70]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]", "(70,80]",
"(70,80]", "(70,80]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]", "(80,90]",
"(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]",
"(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]",
"(90,100]", "(90,100]", "(90,100]", "(90,100]", "(90,100]"),
p_f = c(1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0,
0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0,
1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1,
0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,
1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,
1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0,
1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,
0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1,
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1,
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,
1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0,
1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0), p_m = c(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), p_c = c(0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0,
0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,
0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1,
1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1,
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1,
0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1,
1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0,
1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0,
1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0,
0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1,
0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), p_s = c(0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0)), .Names = c("Type", "stock_ex",
"p_f", "p_m", "p_c", "p_s"), row.names = c(8L, 12L,
14L, 16L, 27L, 33L, 35L, 36L, 39L, 41L, 42L, 48L, 50L, 51L, 53L,
61L, 68L, 71L, 81L, 87L, 90L, 92L, 95L, 98L, 100L, 101L, 102L,
111L, 117L, 123L, 126L, 132L, 135L, 136L, 140L, 146L, 152L, 154L,
159L, 161L, 162L, 164L, 169L, 173L, 175L, 180L, 183L, 189L, 191L,
192L, 194L, 196L, 200L, 201L, 204L, 206L, 209L, 211L, 217L, 226L,
227L, 242L, 245L, 248L, 249L, 250L, 255L, 264L, 268L, 274L, 276L,
278L, 280L, 281L, 299L, 308L, 314L, 319L, 336L, 345L, 348L, 391L,
3L, 7L, 17L, 23L, 26L, 28L, 30L, 31L, 37L, 46L, 64L, 65L, 67L,
73L, 75L, 77L, 79L, 80L, 83L, 86L, 96L, 97L, 103L, 105L, 107L,
109L, 110L, 114L, 116L, 119L, 121L, 122L, 124L, 128L, 133L, 142L,
148L, 150L, 153L, 156L, 157L, 160L, 163L, 165L, 168L, 172L, 176L,
177L, 178L, 181L, 187L, 188L, 195L, 199L, 202L, 203L, 207L, 213L,
219L, 221L, 224L, 225L, 230L, 232L, 251L, 252L, 254L, 258L, 262L,
273L, 275L, 285L, 290L, 297L, 303L, 305L, 311L, 313L, 316L, 322L,
324L, 325L, 332L, 342L, 343L, 346L, 347L, 353L, 354L, 358L, 359L,
360L, 361L, 362L, 367L, 376L, 378L, 389L, 390L, 392L, 393L, 403L,
405L, 406L, 408L, 409L, 420L, 421L, 424L, 425L, 431L, 432L, 433L,
439L, 449L, 451L, 453L, 455L, 459L, 465L, 466L, 467L, 470L, 474L,
475L, 476L, 477L, 480L, 483L, 486L, 491L, 492L, 493L, 500L, 501L,
502L, 503L, 505L, 506L, 509L, 511L, 515L, 519L, 520L, 524L, 526L,
527L, 529L, 532L, 533L, 540L, 542L, 546L, 547L, 548L, 551L, 555L,
556L, 557L, 559L, 560L, 563L, 564L, 565L, 566L, 568L, 573L, 1L,
2L, 4L, 9L, 10L, 11L, 13L, 15L, 19L, 22L, 24L, 29L, 34L, 49L,
54L, 57L, 60L, 62L, 70L, 76L, 93L, 104L, 106L, 108L, 112L, 113L,
127L, 130L, 138L, 139L, 147L, 155L, 166L, 171L, 182L, 193L, 198L,
212L, 220L, 222L, 228L, 231L, 234L, 235L, 236L, 237L, 238L, 241L,
243L, 244L, 246L, 265L, 269L, 270L, 286L, 294L, 296L, 300L, 301L,
307L, 317L, 323L, 329L, 330L, 331L, 338L, 339L, 341L, 351L, 366L,
368L, 370L, 374L, 377L, 379L, 381L, 382L, 385L, 394L, 397L, 404L,
414L, 415L, 418L, 423L, 428L, 434L, 438L, 441L, 444L, 446L, 452L,
460L, 461L, 462L, 469L, 481L, 485L, 599L, 601L, 604L, 605L, 608L,
5L, 6L, 18L, 20L, 25L, 32L, 38L, 43L, 44L, 45L, 55L, 56L, 58L,
63L, 66L, 69L, 72L, 74L, 78L, 82L, 84L, 85L, 88L, 89L, 91L, 94L,
118L, 120L, 125L, 129L, 134L, 137L, 141L, 143L, 144L, 145L, 149L,
151L, 158L, 170L, 174L, 179L, 184L, 185L, 186L, 197L, 205L, 208L,
210L, 214L, 215L, 216L, 223L, 229L, 233L, 239L, 240L, 247L, 253L,
259L, 260L, 261L, 263L, 266L, 267L, 271L, 282L, 283L, 288L, 289L,
291L, 292L, 293L, 295L, 302L, 304L, 306L, 310L, 312L, 315L, 318L,
321L, 326L, 327L, 333L, 334L, 335L, 337L, 340L, 344L, 350L, 355L,
356L, 357L, 364L, 365L, 369L, 371L, 372L, 373L, 375L, 387L, 388L,
395L, 398L, 399L, 407L, 411L, 412L, 416L, 419L, 426L, 430L, 436L,
442L, 443L, 445L, 447L, 448L, 450L, 456L, 457L, 468L, 471L, 484L,
487L, 495L, 496L, 497L, 498L, 499L, 504L, 507L, 510L, 512L, 513L,
518L, 521L, 522L, 523L, 528L, 530L, 531L, 534L, 535L, 538L, 539L,
541L, 544L, 549L, 553L, 558L, 561L, 562L, 569L, 570L, 574L, 575L,
576L, 579L, 581L, 588L, 595L, 597L), class = "data.frame")
I tried GLM.
a=anova(glm(p_f ~ stock_ex , family=binomial),test="Chisq")
a=anova(glm(p_s ~ stock_ex , family=binomial),test="Chisq")
a=anova(glm(p_c ~ stock_ex , family=binomial),test="Chisq")
The problem is that the number of availibilty of product is different globally, and more than that different per type
experiment.
> sum(res$p_f) [1] 222
> sum(res$p_c) [1] 225
> sum(res$p_s) [1] 22
Firstly, is my approach is ok ? secondly, how to study choices under this restriction ? and finally, how to be aware of that in my analyses ? I'm sorry if my question could be seen as basic.
Edit 1: DV : p_f
, p_c
, p_s
andp_m
ID : stock_ex
and type