0

I'm trying to determine what would be a good model for my problem. I am not a statistician and use some words colloquially - please excuse my lack of knowledge.

I'll illustrate the problem with the mtcars dataset in R.

BACKGROUND

For linear regression, I can use the function lm to get a model. Without any prior knowledge of the relationship b/w the independant variables and dependant variable (mpg), I can fit a model with all variables and then use backward elimination to remove the number of independant variables in the model:

> all_in <- lm(formula = mpg ~ ., data = mtcars)
> summary(all_in)

Call:
lm(formula = mpg ~ ., data = mtcars)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4506 -1.6044 -0.1196  1.2193  4.6271 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept) 12.30337   18.71788   0.657   0.5181  
cyl         -0.11144    1.04502  -0.107   0.9161  
disp         0.01334    0.01786   0.747   0.4635  
hp          -0.02148    0.02177  -0.987   0.3350  
drat         0.78711    1.63537   0.481   0.6353  
wt          -3.71530    1.89441  -1.961   0.0633 .
qsec         0.82104    0.73084   1.123   0.2739  
vs           0.31776    2.10451   0.151   0.8814  
am           2.52023    2.05665   1.225   0.2340  
gear         0.65541    1.49326   0.439   0.6652  
carb        -0.19942    0.82875  -0.241   0.8122  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.65 on 21 degrees of freedom
Multiple R-squared:  0.869, Adjusted R-squared:  0.8066 
F-statistic: 13.93 on 10 and 21 DF,  p-value: 3.793e-07

As expected, the significance values are too high for all independat variables. To simplify the model, I can use step for backward elimination:

> step(object = all_in, direction = "backward")
Start:  AIC=70.9
mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb

       Df Sum of Sq    RSS    AIC
- cyl   1    0.0799 147.57 68.915
- vs    1    0.1601 147.66 68.932
- carb  1    0.4067 147.90 68.986
- gear  1    1.3531 148.85 69.190
- drat  1    1.6270 149.12 69.249
- disp  1    3.9167 151.41 69.736
- hp    1    6.8399 154.33 70.348
- qsec  1    8.8641 156.36 70.765
<none>              147.49 70.898
- am    1   10.5467 158.04 71.108
- wt    1   27.0144 174.51 74.280

Step:  AIC=68.92
mpg ~ disp + hp + drat + wt + qsec + vs + am + gear + carb

       Df Sum of Sq    RSS    AIC
- vs    1    0.2685 147.84 66.973
- carb  1    0.5201 148.09 67.028
- gear  1    1.8211 149.40 67.308
- drat  1    1.9826 149.56 67.342
- disp  1    3.9009 151.47 67.750
- hp    1    7.3632 154.94 68.473
<none>              147.57 68.915
- qsec  1   10.0933 157.67 69.032
- am    1   11.8359 159.41 69.384
- wt    1   27.0280 174.60 72.297

Step:  AIC=66.97
mpg ~ disp + hp + drat + wt + qsec + am + gear + carb

       Df Sum of Sq    RSS    AIC
- carb  1    0.6855 148.53 65.121
- gear  1    2.1437 149.99 65.434
- drat  1    2.2139 150.06 65.449
- disp  1    3.6467 151.49 65.753
- hp    1    7.1060 154.95 66.475
<none>              147.84 66.973
- am    1   11.5694 159.41 67.384
- qsec  1   15.6830 163.53 68.200
- wt    1   27.3799 175.22 70.410

Step:  AIC=65.12
mpg ~ disp + hp + drat + wt + qsec + am + gear

       Df Sum of Sq    RSS    AIC
- gear  1     1.565 150.09 63.457
- drat  1     1.932 150.46 63.535
<none>              148.53 65.121
- disp  1    10.110 158.64 65.229
- am    1    12.323 160.85 65.672
- hp    1    14.826 163.35 66.166
- qsec  1    26.408 174.94 68.358
- wt    1    69.127 217.66 75.350

Step:  AIC=63.46
mpg ~ disp + hp + drat + wt + qsec + am

       Df Sum of Sq    RSS    AIC
- drat  1     3.345 153.44 62.162
- disp  1     8.545 158.64 63.229
<none>              150.09 63.457
- hp    1    13.285 163.38 64.171
- am    1    20.036 170.13 65.466
- qsec  1    25.574 175.67 66.491
- wt    1    67.572 217.66 73.351

Step:  AIC=62.16
mpg ~ disp + hp + wt + qsec + am

       Df Sum of Sq    RSS    AIC
- disp  1     6.629 160.07 61.515
<none>              153.44 62.162
- hp    1    12.572 166.01 62.682
- qsec  1    26.470 179.91 65.255
- am    1    32.198 185.63 66.258
- wt    1    69.043 222.48 72.051

Step:  AIC=61.52
mpg ~ hp + wt + qsec + am

       Df Sum of Sq    RSS    AIC
- hp    1     9.219 169.29 61.307
<none>              160.07 61.515
- qsec  1    20.225 180.29 63.323
- am    1    25.993 186.06 64.331
- wt    1    78.494 238.56 72.284

Step:  AIC=61.31
mpg ~ wt + qsec + am

       Df Sum of Sq    RSS    AIC
<none>              169.29 61.307
- am    1    26.178 195.46 63.908
- qsec  1   109.034 278.32 75.217
- wt    1   183.347 352.63 82.790

Call:
lm(formula = mpg ~ wt + qsec + am, data = mtcars)

Coefficients:
(Intercept)           wt         qsec           am  
      9.618       -3.917        1.226        2.936  

The last model (with the lowest AIC value and 3 independant variables instead of the initial 10) indeed looks better than the initial model (all_in):

> summary(lm(formula = mpg ~ wt + qsec + am, data = mtcars))

Call:
lm(formula = mpg ~ wt + qsec + am, data = mtcars)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4811 -1.5555 -0.7257  1.4110  4.6610 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   9.6178     6.9596   1.382 0.177915    
wt           -3.9165     0.7112  -5.507 6.95e-06 ***
qsec          1.2259     0.2887   4.247 0.000216 ***
am            2.9358     1.4109   2.081 0.046716 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.459 on 28 degrees of freedom
Multiple R-squared:  0.8497,    Adjusted R-squared:  0.8336 
F-statistic: 52.75 on 3 and 28 DF,  p-value: 1.21e-11

QUESTION

My question is how to carry out the same investigation for higher order models when the order is unknown, i.e. if the square or cube of ``wt` gives me a better fit? I could add additional columns in the dataset corresponding to these higher powers but that would be cumbersome and I'm not sure if that would give me the correct result

Gautam
  • 111
  • 5
  • 2
    It's possible you'll draw helpful answers on this, but more likely people will a) direct your attention to the many threads on this site covering issues like these (search for 'nonlinear', 'spline', 'variable selection' and 'stepwise'), and b) advise that statistical model-building takes time and in-depth study, and that you seldom are best served letting an algorithm choose your variables or their coefficients for you. Regards ~ – rolando2 Apr 06 '18 at 14:57
  • 1
    [Relevant](https://stats.stackexchange.com/questions/338804/hypothesis-testing-on-coefficients-in-two-subsets-of-data-after-stepwise-regress/338807#338807) – Alexis Apr 06 '18 at 15:39
  • Thanks for the info! I've tried searching but I find the answers are sometimes more complex than I can understand - a lot of technical-sounding terms are thrown around which don't mean a whole lot to me. For my actual problem, I know which variables are important (based on physics) but the exact nature of the relationship is unknon. More specifically, the moving avg. of an independant variable is important but the period to average over is unknonwn along with the order of the averaged variable. – Gautam Apr 06 '18 at 17:58

0 Answers0