Problem: we have two processes $x_{t}$ and $y_{t}$ as follows:
$x_{t} = y_{t} + w_{t}$
$y_{t} = \phi_{0} + \phi_{1}y_{t-1} + u_{t}$
$w_{t}, u_{t}$ iid with var: $\sigma_{w}^{2}, \sigma_{u}^{2}$, mean of $w_{t}$ is 0 (mean of $u_{t}$ not mentioned)
$\phi_{1} \neq 0$
then: $x_{t}$ is ARMA(1,1) with:
(i) AR part = $\phi_{1}$
(ii) MA part:
$\theta_{1} = \frac{-\sigma_{u}^{2}-(1+\phi_{1}^2)\sigma_{w}^{2}+\sqrt{\sigma_{u}^{4}+2(1+\phi_{1}^{2})\sigma_{w}^{2} \sigma_{u}^{2}+(1-\phi_{1}^{2})^{2} \sigma_{w}^{4}}}{2\phi_{1}\sigma_{w}^{2}}$
My approach: inserting the definition of $y_{t}$ on the RHS of $x_{t}$ and then replace $y_{t-1}$ gives:
$x_{t} = \phi_{0} + \phi_{1} x_{t-1} + u_{t} + w_{t} - \phi_{1} w_{t-1}$
which proves (i) and suggests $\theta_{1} = -\phi_{1}$. How can I derive result (ii) ?