I am attempting to do a goodness of fit test for a several competing GLMM models. First, it is unclear to me what the best methods are for this, as there are many different methods with positive and negative aspects. So, I came across the package "rms" which provides both the R-squared and a likelihood Ratio Test for X Square. Problem is, I am not sure if rms, command lrm, is applicable for GLMER and how to interpret the results I have obtained if they are. The X square value seems high to me, but perhaps I am not understanding something.
So, to be clear, my question is if this method for representing goodness of fit is acceptable. If not, what are some recommendations to go about this? If yes, then how am I to understand that chi-square value in my ouput?
If there are comments about the rest of my code, I kindly accept them!
####Sample code### (will provide different ouputs from what I have below)
Factor Patch.Structure PatchGram PatchForbs Microtopography standing.dead
1 4 86.6667 5.4444 2 100
0 3 34.3333 5.4555 0 50
1 3 58.3333 2.7778 2 100
0 3 32.3333 19.6667 1 100
1 2 42.7778 18.8889 0 0
0 4 31.6667 13.8889 1 100
1 4 34.4444 16.3333 1 100
0 4 39.4444 7.4444 1 100
1 4 9.6667 5.6667 2 5
0 7 14.8889 75.5556 0 10
1 4 20.0000 19.7778 1 100
0 4 25.0000 21.6667 1 100
1 4 30.3333 21.8744 0 45
0 4 9.7778 0.5556 1 90
###Multivariate models####
Model1 = glmer(Factor~Patch.Structure+(1|Study.area)+(1|Study.Year), data=NestLand, family=poisson (link="log"),nAGQ = 0)
Model2 = glmer(Factor~PatchGram+(1|Study.area)+(1|Study.Year), data=NestLand, family=poisson (link="log"),nAGQ = 0)
Model3 = glmer(Factor~PatchGram+standing.dead+(1|Study.area)+(1|Study.Year), data=NestLand, family=poisson (link="log"),nAGQ = 0)
Model4 = glmer(Factor~PatchGram+Microtopography+(1|Study.area)+(1|Study.Year), data=NestLand, family=poisson (link="log"),nAGQ = 0)
Model5 = glmer(Factor~PatchGram+PatchForbs+(1|Study.area)+(1|Study.Year), data=NestLand, family=poisson (link="log"),nAGQ = 0)
Model6 = glmer(Factor~Patch.Structure+PatchGram+(1|Study.area)+(1|Study.Year), data=NestLand, family=poisson (link="log"),nAGQ = 0)
###Outputs##
out.put<-model.sel(Model1, Model2, Model3, Model4, Model5, Model6)
out.put
####Model fit for top model
Require(rms)
lrm(Model6)
####Output
Logistic Regression Model
lrm(formula = Model6)
Model Likelihood Discrimination Rank Discrim.
Ratio Test Indexes Indexes
Obs 238 LR chi2 128.64 R2 0.650 C 0.932
0 188 d.f. 14 g 6.758 Dxy 0.863
1 50 Pr(> chi2) <0.0001 gr 861.347 gamma 0.864
max |deriv| 0.02 gp 0.290 tau-a 0.288
Brier 0.078
Coef S.E. Wald Z Pr(>|Z|)
Intercept 7.3794 80.0725 0.09 0.9266
Patch.Structure=2 14.4677 50.0347 0.29 0.7725
Patch.Structure=3 11.5718 50.0199 0.23 0.8170
Patch.Structure=4 12.9510 50.0204 0.26 0.7957
Patch.Structure=5 11.9745 50.0347 0.24 0.8109
Patch.Structure=6 9.1426 50.0285 0.18 0.8550
Patch.Structure=7 11.2092 50.0274 0.22 0.8227
Patch.Structure=8 2.6170 74.3649 0.04 0.9719
Patch.Structure=9 1.9226 58.8724 0.03 0.9739
Patch.Structure=11 4.1922 110.6873 0.04 0.9698
PatchGram -0.0505 0.0118 -4.27 <0.0001
Study.area=IR -1.8942 0.7928 -2.39 0.0169
Study.area=NF 0.0446 0.8813 0.05 0.9596
Study.Year=2016 -18.8128 62.5319 -0.30 0.7635
Study.Year=2017 -17.2469 62.5325 -0.28 0.7827