I want to model a stock's volatility with a proxy variable. Consider a standard GARCH(1,1) model: $$ \sigma^2_t=a+b \sigma^2_{t-1}+c r^2_{t-1}. $$ Classically, $r_{t}$ is the return of the stock at time $t$.
Instead of return of stock, I want to use a proxy variable. Let define it as $p$. So the model becomes: $$ \sigma^2_t=a+b \sigma^2_{t-1} + c p^2_{t-1}. $$ Namely, another variable is used instead of squared returns.
I want to estimate the parameters $a$, $b$ and $c$ using rugarch
package in R.
How can I do this? I guess, $p$ will be defined as external variable.
Data is as below:
data<-structure(c(0.00240428226573286, 0.00718664351112785, 0.00417663958775449,
-0.0124234291416307, 0.00615240249156912, 0.0096846888172486,
0.0106526433200909, -0.00786660798829253, -0.0122874870756498,
-0.000314141256930967, 0.000471174886371273, -0.0208884504520821,
-0.0149969692551366, 0.0241492647161508, 0.00419227605454964,
0.0178426729434715, 0.00339145325161994, 0.00518480259013288,
0.0144432753009873, -0.000454914348644309, -0.0129016560881787,
0.0104447845272464, 0.0167547608104748, -0.00405921117604713,
-0.0300729637845212, -0.00822872240789607, 0.00278348586175703,
-0.00943594943234238, -5.99101840794702e-05, 0.000996016229104058,
-0.000829404324086624, 0.0258218725118393, 0.00877055916031999,
-0.00588618984169464, 0.0254017935654574, 0.00805703215794296,
-0.0191565531978934, 0.0152034393746021, -0.00363509820161312,
0.0117471147043791, 0.00185834076893698, 0.0109010059113128,
0.000525595380350907, 0.00471136142307849, 0.00378484394178535,
0.00256537092911024, 0.0134933997293825, 0.00363203707933835,
0.00448837964129467, 0.00916296013641471, -0.0135706087748861,
0.00426982136304233, 0.0249833876507619, 0.019064654422376, 0.00552211291815752,
-0.0198178211588615, -0.0170519265736608, 0.0120525451282543,
-2.37224843004924e-05, -0.000146280600871407, 0.00477158577627002,
0.014383729883134, 0.00421564947003716, -0.0109717193626331,
0.0182095942293206, -0.0108949339087712, -0.0176664501445263,
-0.00426136213898864, 0.0163439380148436, 0.0178444666710593,
-0.00319282678270305, 0.0233384597132087, 0.00102961481001707,
-0.00247084887334204, 0.00896252965220334, -0.00107396173656049,
-0.00815784718500012, 0.00140858905036012, 0.00184093926106854,
-0.00841584807540308, 0.0075738167721191, -0.00446712175714303,
0.00121321378245653, -0.00175673411449218, -0.0177111606464013,
-0.0334792540725228, -0.021030442634931, -0.00865103680757429,
-0.00421196940949287, 0.00881717323241915, -0.00329042016708669,
0.00285661638368673, -0.0091984467251045, -0.00635158904182198,
-0.0104482543279794, 0.00359730221733479, -0.000431138620978544,
-0.0115382875664558, 0.00533047803197206, 0.0341741617915705,
-0.0104470816276567, -0.00732144270561363, -8.62463751900577e-05,
0.00646817036545677, -0.00936218069462136, -0.00992630520256377,
-0.00995174579671421, 0.0241883533000227, 0.00578491104143275,
-0.00555291698752569, 0.00859969423753348, -0.0143210399197393,
-0.0106656279629131, -0.00460249153100456, -0.010173846679443,
0.00628725502787653, -0.0207505962948851, 0.0101111964328382,
0.0273637272462803, 0.000106801184665883, -0.00340971899708542,
0.00930603680385644, -0.0342227015274759, -0.00272057238669277,
0.0232516656596928, -0.00282957942797246, 0.00137068445465083,
0.0146662205383272, 0.00557236352191204, -0.00470848819449188,
0.01545895026171, 0.0237779175036614, 0.0022179786175851, 0.0154723164160355,
0.00284859279265781, -0.0734795439085705, -0.0101844065754371,
-0.0168785371789415, -0.0451668472504849, 0.00200162750463484,
0.0333872319914033, -0.00655444963038754, 0.0186375681927853,
0.00224002580098137, 0.00214365086334034, 0.01717336389666, -0.0119039720455039,
-0.0166511258509399, 0.0208862527198921, -0.000787824156615713,
0.0222754484996237, 0.00954288703328032, -0.00727556935841456,
0.0137326236782958, -0.0102379006489173, 0.00311433870608724,
-0.0098021206176373, 0.00565514504945241, -0.00226609648997211,
0.00223756041797607, -0.00246408074099946, -0.0079808840138309,
-0.0158660954154453, 0.00881042570067692, 0.00428512104701007,
-0.0130623086945807, -0.00198847471210328, -0.00151270842662043,
0.0135073344736334, 0.0117315016530082, 0.00260857338333409,
-0.00451831385594481, 0.00257655670181478, -0.0101997675299845,
-0.0135002265633961, 0.0214784602834559, -0.00461067140901328,
0.00776184432271698, 0.0238427144319235, -0.000495135212737807,
-0.0387403757953813, 0.00565275629502793, 0.00667937353452963,
-0.00776691741432067, -0.00766349350523576, 0.00958945509957054,
-0.00217288868014798, 0.0102753819264656, 0.000527389159218572,
0.00104278741483199, -0.00180603147915903, -0.0024659310273023,
-0.00235092677265314, -0.00843919357593137, 0.00963829977017916,
-0.00150498322541637, 0.0115911140449825, 0.0110373532490922,
0.000537162615545483, -0.00517091804718639, 0.013716249701627,
-0.00626535235492476, -0.00044537835702485, -0.00833167889318887,
-0.00517343387401326, 0.00259197243534537, -0.0142035782174386,
-0.00332432066398702, -0.00637259964301151, -0.0319897877349788,
0.0188708261874773, 0.00902118748854797, -0.00208183811690787,
0.00198454105666279, -0.0156560254475639, -0.0100950585869821,
0.00978093861225737, -0.00522315899479864, 0.00503232384557784,
0.00666876157161944, -0.00126191845920864, 0.00354688366125622,
-0.0102764670148119, -0.0113092429587738, 0.00229380810354662,
0.00839328069543654, -0.0105198364905359, -0.002837775658179,
-0.0201399087459038, 0.0119401772698691, 0.00284045488011309,
0.0246084027100704, 0.00788890594633074, -0.00133535072794366,
-0.00266444216114259, 0.00674294083180094, 0.00986258515676042,
-0.00148717060305792, 0.0103228516356264, -0.00114563042290783,
-0.00558149616106718, 0.00839029408001757, -0.00242454214368415,
-0.00277027874972191, -0.00560435091364653, 0.000731425659337148,
-0.00428107774040676, 0.0109993438147029, 0.0037087621145826,
0.00388281880721841, -0.00492902801425465, -0.0147212663223222,
-0.0062137466061678, 0.00318246089141461, 0.00938513022545173,
0.00372645244357095, -9.69066555711606e-06, 0.0035197962925686,
0.0406780148963204, 0.0077983167274418, 0.00229569544477393,
0.00793643833981328, 0.00504391169459417, -0.00580243023076754,
0.00927432095852687, -0.000232971205631927, 0.0138722766791695,
-0.0129039060692566, 0.00836494753892758, 1.01399352825382e-05,
0.0283457779811229, 0.00067442071407342, 0.00637900121597035,
0.00626980084182271, 0.0113243798290323, -0.0117401689487977,
0.00135979977779499, 0.00879045569253378, 0.00656352401512272,
-0.0153928479424028, 0.0125530726116168, -0.00561643658804734,
-0.00227591872884325, 0.0034633081250135, 0.00727107400641813,
-0.00273647607013316, 0.00425203735149005, -0.00488867171599416,
0.00683394561459849, -0.00992043957091049, -0.00560198247430499,
-0.00327635391489345, 0.0208371203446358, 0.00684650777054152,
-0.00235817540968775, 0.0146372216938975, -0.00254461570527909,
-0.0147392682797047, -0.00540476259961409, 0.00681741066701314,
-0.00202936679798782, -0.00328393800144688, 0.0034608210234186,
0.00915650804831181, 0.0024681397557007, 0.00452850517684666,
-0.00325770029997052, -0.00883931780571601, -0.000500965633410289,
0.00686775854728872, -0.00763740444788219, 0.00541127306787104,
-0.0101645080291242, 0.000140351294030339, -0.00375751614814845,
-0.00312954762505058, -0.000642140719694595, 0.0047835723077192,
-0.00403350849344264, -0.00205117718248182, 0.0305259473841222,
-0.00368893454833596, 0.000524259091893242, -0.0119619058683504,
0.00214533859236532, 0.00653076907380878, 0.00791071061486903,
-0.0062537972532688, 0.0135117597884715, 0.00416939885856848,
0.0148088851181498, 0.00883162254853787, -0.00119022679055902,
-0.00254082633103003, 0.00394659516152096, -0.003168068545504,
-0.00524040660809355, -0.00882022385438397, 0.00951940493577297,
-0.00101927410289804, 0.015761701773787, 0.00909395368709731,
-0.0112922617960063, -0.00123833318798283, 0.00620620396185423,
0.00598439589524169, -0.00455009463326661, -0.00605233754141565,
0.0130798753275556, 0.0135739452716361, 0.00608364063475264,
-0.00613010218358134, -0.00184034344641404, 0.00197347969190886,
-0.00387874641259245, 0.00199036225790472, -0.00180383171416842,
0.0153096987521142, -0.00686017554850871, 0.0014203900944505,
-0.00729808882639027, 0.00369152733962785, 0.00980434412762321,
0.00503305294462741, -0.00143341801999597, 0.00338400714536036,
-0.00906640410340387, -0.00552950392268947, 0.0115387367679265,
-0.000633026777244083, 0.00121665545139571, 0.00683871348798348,
-0.00434128430549308, 0.00977794561054779, -0.00425650993954818,
0.00249283999941774, 0.000815176235308357, 0.00679613674310175,
-0.00458861771460839, -0.001166401766314, -0.00540718042119614,
0.0100685043595448, 0.0204185872102673, 0.00605956410345243,
0.00385001917730676, 0.00922236514154662, 0.00985160106128902,
-0.00470606734079837, 0.01594519327646, -0.00636892362420838,
0.00100412807768002, -0.00123875407891383, 0.00308910806569429,
0.00154485396972071, 0.0109979003939937, -0.00640462572168055,
-0.0015637144202536, -0.0129542930903757, 0.0035548530292111,
0.00588116908225444, 0.0129026905494971, 0.0113209668876699,
-0.00129441124807883, -0.00846832936736064, -0.00844436119602499,
-0.00779763940020217, 0.023781763109044, -0.0242478267815525,
-0.000479662645538781, -0.000343118163115719, 0.00352384560039809,
0.0130894063298506, -0.000188021398532356, 0.00329381722090716,
0.0018447861748303, 0.0054929799543082, 0.00531453264371429,
0.000753024431418226, -0.00374371676477558, -0.0103937514181691,
0.0067629682572683, 0.0011958712688962, -0.0118359004134643,
0.00923609281688798, -0.00300438045761275, -0.00896634115784245,
0.000819686759950145, -0.00465327468340249, -0.0112668808388143,
-0.0152929145318392, 0.00386127972024042, -0.0126357426677117,
0.0011690144781813, -0.0179534149314371, 0.0160931118496812,
-0.0264315783876601, 0.0140562888877458, 0.00249690206283404,
0.000251696829239227, 0.00017522322072055, 0.000275363243167333,
0.000211105950690771, 0.000163839416020752, 0.000177902992174424,
6.59515569106677e-05, 0.000125476365474465, 0.000191536406751375,
3.25491953708898e-05, 7.69018038123833e-05, 0.000103732359318023,
0.000181203607121594, 9.567355632008e-05, 6.73704964044718e-05,
0.000262907836701601, 5.70646094548377e-05, 2.80184857933882e-05,
1.22050603124915e-05, 3.50465534454949e-05, 0.000132914077967553,
0.000177325167760662, 3.94445454935299e-05, 3.51131637087737e-05,
0.000471469128859536, 0.000144905501568129, 0.000136805944798802,
0.00014022907235976, 2.96864607926418e-05, 0.000329364618989424,
7.21229903662821e-05, 0.000339778319808316, 8.58031840053938e-05,
4.15770668836548e-05, 0.000115357565229386, 9.93179828939986e-05,
0.000206372940133756, 8.54154066453355e-05, 8.85452125772954e-05,
0.000149552602097445, 1.84189605691082e-05, 2.84284442258795e-05,
6.8520326605446e-05, 6.47293456606985e-05, 4.22289490031618e-05,
5.81466605094683e-05, 0.000106241118904363, 7.88018013506138e-05,
4.35120989998532e-05, 4.96716670653076e-05, 9.90941099809679e-05,
7.70396038803412e-05, 5.43616391654606e-05, 0.000158796018397317,
6.18992611437467e-05, 0.000187970881036946, 0.000134517428810996,
8.90045601947622e-05, 1.16607647227688e-05, 4.01664497528001e-05,
3.02826019527932e-05, 2.90468659792095e-05, 4.82900445848854e-05,
6.68076269632769e-05, 8.43702053437563e-05, 7.98257028283379e-05,
0.000122283923761186, 7.42674973783328e-05, 0.000154605029057066,
0.000168824990589982, 6.9767942080428e-05, 0.000162042970218633,
4.09403798935569e-05, 9.39788930749552e-05, 9.47721402729103e-05,
3.81254494638359e-05, 0.000134039295865642, 8.70010694063299e-05,
2.98882439265544e-05, 3.71624574372021e-05, 3.95719993032863e-05,
3.37886471651818e-05, 4.14174551011361e-05, 3.38931579571461e-05,
0.000107124213529608, 0.000613339396392203, 0.000218423481823372,
0.000332089337487209, 0.000150223120256456, 4.22226580635917e-05,
6.53852698628739e-05, 7.63504882597116e-05, 0.000101511288238334,
6.04889670561399e-05, 0.000135306909708342, 0.00010502445390268,
7.29813762018909e-05, 8.62596951298854e-05, 3.56768162059361e-05,
0.000550322998864941, 0.000104248623283486, 5.80545390044564e-05,
2.95757577033753e-05, 4.97201531315361e-05, 9.93636604470571e-05,
6.25207633380187e-05, 8.96769611037735e-05, 0.000239763626815782,
2.26154963531147e-05, 0.000113455569292049, 0.00010563989234135,
9.90417495742469e-05, 7.51785085665525e-05, 8.55815277260885e-05,
9.89695913602566e-05, 1.73847952242902e-05, 0.000127496737328366,
4.8918167639677e-05, 7.75073629546763e-05, 3.29754440787082e-05,
4.43662474332819e-05, 7.74413334957894e-05, 0.000147476111024546,
6.6791628560791e-05, 9.45609736158338e-05, 6.49057079913758e-05,
4.61885494925713e-05, 3.59631003246465e-05, 8.86167153380899e-06,
2.88228847294921e-05, 2.55469982842352e-05, 0.000200657200822739,
2.84560512922749e-05, 6.56165031993773e-05, 1.85095319693852e-05,
0.00190294782480662, 0.000375818744883927, 0.000301209827296353,
0.000480455271126961, 0.000397014708229449, 0.00025918313912419,
0.000173402100110612, 0.000113078806300364, 6.86429503060352e-05,
8.34387051768533e-05, 2.3670217640922e-05, 6.83066035346156e-05,
0.000180343224730863, 0.000223243234350127, 0.000166912276937141,
5.46484176131866e-05, 7.30516495659959e-05, 8.5218200541149e-05,
9.96516821371827e-05, 0.000103914634813067, 3.70030379934397e-05,
9.55510865907992e-05, 5.87885738004437e-05, 8.75067771417903e-05,
5.27720915053515e-05, 2.6419651275901e-05, 5.48094221227643e-05,
8.72405727827472e-05, 1.96560308229845e-05, 6.93817274648136e-05,
4.70674767653476e-05, 2.5907373486309e-05, 2.52971349586753e-05,
6.19496496600335e-05, 1.91894648039667e-05, 1.44011567821633e-05,
3.96944891245991e-05, 3.32237130167791e-05, 3.23655961168222e-05,
9.52041049972125e-05, 9.22140585500244e-05, 2.95601579995698e-05,
5.7298413655549e-05, 7.14545975181224e-05, 1.85021501488288e-05,
3.97889051134439e-05, 4.19969285326145e-05, 2.37757860999814e-05,
6.83550884886579e-05, 2.22313172550589e-05, 1.64109373863327e-05,
2.50069940816964e-05, 0.000133533632946732, 3.43344514436906e-05,
4.01942754137392e-05, 4.00875516703114e-05, 2.22432547040901e-05,
5.43845806877527e-05, 5.9418870478874e-05, 5.12875402735082e-05,
2.82467177617649e-05, 2.62091838093053e-05, 3.12080373188776e-05,
1.32047314044513e-05, 2.2453979579877e-05, 4.21337587707333e-05,
4.90212688538938e-05, 2.36981055735853e-05, 4.18197039400705e-05,
2.59711545037003e-05, 2.58342154246319e-05, 0.000147459370616682,
1.25317721108411e-05, 5.38933522750419e-05, 0.000196547057533799,
3.08240167594024e-05, 9.34139867094966e-05, 0.000194508541245898,
3.42414294074545e-05, 9.86528548649803e-05, 9.22178957487724e-05,
2.97663215467467e-05, 6.57718575849746e-05, 4.40737567982907e-05,
0.000105995440557507, 3.49751323240696e-05, 4.02114808912311e-05,
9.04095828425618e-05, 0.000199329360038168, 4.68432763072529e-05,
1.15898377680142e-05, 5.50531357702367e-05, 5.68853037889909e-05,
0.000208053135521747, 0.00020974116304657, 8.89272761075408e-05,
0.000136745788067257, 5.44581078541029e-05, 0.000113038126533384,
2.19813425832949e-05, 0.000111834450124839, 3.42978025654599e-05,
2.58992898017638e-05, 0.000123249431791024, 1.37017959331783e-05,
3.64182142079759e-05, 5.91927644927271e-05, 2.47363529761202e-05,
2.27547569361703e-05, 2.84558648810933e-05, 3.16997977682179e-06,
2.76175884125892e-05, 6.50968985734015e-05, 1.46697270313268e-05,
2.17641327381935e-05, 9.4933834637042e-06, 0.000107412534660489,
8.68052627803114e-05, 8.23442206285077e-05, 6.20309617700574e-05,
6.04407769982201e-05, 2.10410679101835e-05, 8.08957282902381e-05,
0.000581160293408342, 9.05216168882922e-05, 3.58498956154576e-05,
4.17979603816406e-05, 3.1888590680442e-05, 8.77226569442234e-05,
8.45051670313448e-05, 2.37705176179761e-05, 9.86391939149065e-05,
0.000111196053362138, 6.29384742590553e-05, 3.02581535758277e-05,
0.000345453433421844, 3.03586521519416e-05, 4.07730753344357e-05,
3.47026851439381e-05, 8.4428046020042e-05, 0.000222860337624946,
6.76557092786444e-05, 5.35171009261701e-05, 6.19228760921732e-05,
0.000194516476990722, 7.66618266042191e-05, 8.65312966088938e-05,
3.0754647695138e-05, 1.00788916857499e-05, 3.96856810899448e-05,
5.66122672529014e-05, 1.44202225767032e-05, 0.000122692445082544,
1.29905560674662e-05, 8.37799134847452e-05, 3.28651845529763e-05,
2.77344616080471e-05, 0.000133922438916515, 1.7548881551105e-05,
1.18841639375643e-05, 8.25134052825601e-05, 2.79252505882886e-05,
0.000149024714447796, 3.24693629084838e-05, 1.61948134168028e-05,
2.56757750198079e-05, 1.20022023145613e-05, 1.84331575331312e-05,
2.10329757885255e-05, 2.42187422599094e-05, 2.61033662863108e-05,
4.8683833737119e-05, 3.66736451965113e-05, 1.56569123184106e-05,
2.34140210939387e-05, 3.41944261637873e-05, 1.07669609833721e-05,
2.13159712542394e-05, 1.30652721592893e-05, 2.13248053164098e-05,
1.10989202936212e-05, 2.6334478933188e-05, 3.78561671279791e-05,
6.21969123364183e-06, 1.10119718300075e-05, 0.000303645486323138,
4.28617244240951e-05, 1.51135158814735e-05, 0.000105661522380075,
6.61841886292213e-05, 3.88521798109723e-05, 0.000108986943624248,
9.18023690068784e-05, 4.02916917750316e-05, 1.42812637717812e-05,
4.41487571637231e-05, 8.56025851377888e-05, 2.29176278548008e-05,
3.93726254330663e-05, 4.19972308951646e-05, 4.39408528363837e-05,
4.1480989312815e-05, 4.74928921013171e-05, 4.05891036460579e-05,
2.69528546909246e-05, 0.000113188710293188, 5.92874877910705e-05,
8.56545230702197e-05, 4.45389287385462e-05, 1.49224819308372e-05,
1.60844261431746e-05, 5.94261122246516e-05, 6.39321140846586e-05,
1.46646995926698e-05, 0.000102351777804229, 4.47366330784193e-05,
2.58807836130737e-05, 2.48883728985456e-05, 1.95443494029704e-05,
2.49419725044458e-05, 3.99730949590299e-05, 3.4334052855792e-05,
2.84969317437886e-05, 7.47011896110564e-05, 2.4958172467419e-05,
6.49490795459021e-05, 9.35876918743102e-06, 2.81441262165721e-05,
2.38018179081759e-05, 4.51645065052744e-05, 2.48153653068517e-05,
2.19133086248705e-05, 4.4331096434246e-05, 1.30708245176768e-05,
2.39958000762706e-05, 3.16210537922156e-05, 1.29897973950419e-05,
1.59501644154367e-05, 5.18424475433767e-05, 3.43933059234282e-05,
3.25316512235633e-05, 9.59276586584779e-06, 2.25044879921891e-05,
1.59048446587355e-05, 3.63040758361367e-05, 2.03327388129577e-05,
1.24317053781249e-05, 0.00022161287860766, 5.08065855722322e-05,
4.32004933767084e-05, 2.62095052621456e-05, 4.67218904970417e-05,
1.39483373696752e-05, 6.36885378756304e-05, 3.94711729731203e-05,
4.09316792298712e-05, 2.74252209954707e-05, 9.92229707550133e-06,
1.05318446840864e-05, 1.96029967402156e-05, 1.61167531099498e-05,
1.96553989691529e-05, 0.000114402900593077, 2.37332447126461e-05,
7.92572629418175e-06, 5.73721222022227e-05, 2.13554641110311e-05,
2.35349151201844e-05, 2.04451809559905e-05, 7.97304987239316e-05,
6.72201382801117e-05, 8.82487855431822e-05, 0.000337149060503328,
0.000283763875534853, 5.02492000483912e-05, 5.75935159270043e-05,
0.000133885480633097, 2.5902811707761e-05, 1.10307554157718e-05,
3.67190448310762e-05, 4.09980404152374e-05, 1.06602623727468e-05,
2.85704164595956e-05, 9.4298667580655e-06, 8.71484758815029e-05,
4.61528767616413e-05, 2.68856813898253e-05, 0.000107174505446985,
2.48112499399045e-05, 3.29821771639092e-05, 5.51938302016303e-05,
5.57698705374946e-05, 1.93908748677266e-05, 7.42236205690357e-05,
0.000144181296449081, 3.35710254658763e-05, 8.32441455033252e-05,
5.64578087018336e-05, 0.000126656066727925, 0.00010096108009589,
0.000271854655428855, 0.000131901108358219, 3.96100591203911e-05
), .Dim = c(438L, 2L), .Dimnames = list(NULL, c("return", "proxy"
)))
where proxy
is in squared form $p^2_{t}$ and the data is in increasing time order.
My code is as below:
library(rugarch)
data<-as.data.frame(data)
modelp<-ugarchspec(variance.model=list(model="sGARCH",
garchOrder = c(0, 1),
external.regressors =matrix(data$proxy)),
mean.model=list(armaOrder=c(0,0), include.mean=FALSE),
distribution.model = "norm")
fitp<-ugarchfit(data=data$return,modelp)
However, the estimated volatility seems strange:
> head(sigma(fitp),20)
[,1]
1970-01-02 02:00:00 0.01157120
1970-01-03 02:00:00 0.01156687
1970-01-04 02:00:00 0.01156255
1970-01-05 02:00:00 0.01155823
1970-01-06 02:00:00 0.01155391
1970-01-07 02:00:00 0.01154959
1970-01-08 02:00:00 0.01154527
1970-01-09 02:00:00 0.01154095
1970-01-10 02:00:00 0.01153664
1970-01-11 02:00:00 0.01153233
1970-01-12 02:00:00 0.01152801
1970-01-13 02:00:00 0.01152370
1970-01-14 02:00:00 0.01151940
1970-01-15 02:00:00 0.01151509
1970-01-16 02:00:00 0.01151078
1970-01-17 02:00:00 0.01150648
1970-01-18 02:00:00 0.01150218
1970-01-19 02:00:00 0.01149788
1970-01-20 02:00:00 0.01149358
1970-01-21 02:00:00 0.01148928
I just pasted first 20 fits. The estimates are linearly decreasing.
The estimated coefficients are as below:
> fitp
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(0,1)
Mean Model : ARFIMA(0,0,0)
Distribution : norm
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
omega 0.00000 1e-06 0.0000e+00 1.00000
beta1 0.99925 2e-06 4.1511e+05 0.00000
vxreg1 0.00000 6e-06 1.6560e-03 0.99868
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
omega 0.00000 8e-06 0.000e+00 1.00000
beta1 0.99925 4e-06 2.583e+05 0.00000
vxreg1 0.00000 6e-06 1.686e-03 0.99865
Where am I doing wrong? I will be very glad for any help. Thanks a lot.
I did the same analysis using Eviews. The resutls are as below:
Dependent Variable: RETURN
Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)
Date: 11/01/17 Time: 20:04
Sample: 1 438
Included observations: 438
Convergence achieved after 19 iterations
Coefficient covariance computed using outer product of gradients
Presample variance: backcast (parameter = 0.7)
GARCH = C(1) + C(2)*GARCH(-1) + C(3)*PROXY
Variable Coefficient Std. Error z-Statistic Prob.
C 1.60E-05 7.38E-06 2.161932 0.0306
GARCH(-1) -0.082888 0.032435 -2.555532 0.0106
PROXY 1.409768 0.188990 7.459494 0.0000
R-squared -0.005593 Mean dependent var 0.000863
Adjusted R-squared -0.003297 S.D. dependent var 0.011552
S.E. of regression 0.011571 Akaike info criterion -6.525471
Sum squared resid 0.058645 Schwarz criterion -6.497511
Log likelihood 1432.078 Hannan-Quinn criter. -6.514439
Durbin-Watson stat 1.965053
These results are close to my expectation.
Able to find the problem in this subject, I opened the below topic:
GARCH estimates differ in rugarch (R) vs. EViews
In that topic, @BayerSe mentioned that the backcasting parameter in EViews is 0.7 as default. However, rugarch
uses 1 as backcasting parameter. I thank @BayerSe, his analysis was very clear.
In EViews, it is possible to determine the backcasting parameter. Then I set it as 1, which is as same as rugarch
. Because of the char. limit of I can't paste the results, but the values didn't change much.