I'm using R to estimate a logit model and I use the following to suppress the intercept.
model = glm(output ~ email + search + display + seq1 + seq2 + seq3 + seq4 + seq5 + seq6 + 0, data = dataInput, family = "binomial")
But in the output there is a dispay0 term which I do not understand. Could I know what this is and how to interpret it.
Coefficients: (4 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
display0 0.2311 0.9044 0.256 0.7983
display1 0.1823 0.6055 0.301 0.7633
email1 -0.3646 0.7416 -0.492 0.6229
search1 NA NA NA NA
seq11 -0.9398 0.5273 -1.782 0.0747 .
seq21 NA NA NA NA
seq31 -0.9163 0.7000 -1.309 0.1905
seq41 NA NA NA NA
seq51 -1.4759 0.8172 -1.806 0.0709 .
seq61 NA NA NA NA
My data looks like below
output seq1 seq2 seq3 seq4 seq5 se6 display email search
1 or 0 1 0 0 0 0 0 1 1 0
1 or 0 0 1 0 0 0 0 1 1 0
1 or 0 0 0 1 0 0 0 1 0 1
1 or 0 0 0 0 1 0 0 1 0 1
1 or 0 0 0 0 0 1 0 0 1 1
1 or 0 0 0 0 0 0 1 0 1 1