I am trying to make a model using GLMM parts of data as follow (it is a ten years data,just post parts )
id year distance1 sum1 sum
1 2006 183.21 5148 3.71
2 2006 442 1360 3.13
3 2006 187.33 11455 4.06
4 2006 795.74 287 2.46
5 2006 684.69 1485 3.17
6 2006 552.89 2382 3.38
7 2006 813.09 553 2.74
8 2006 525.11 53149 4.73
9 2006 510.27 29680 4.47
10 2006 806.29 201 2.31
11 2006 728.41 207 2.32
12 2006 770.91 42170 4.63
13 2006 766.86 11507 4.06
14 2006 987.29 563 2.75
15 2006 1250.55 703 2.85
here is my R code
M1 <- glmer(sum1 ~ distance1 + (1|year), family = poisson)
there are the warning messages:
1: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.236049 (tol = 0.001, component 1)
2: In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model is nearly unidentifiable: very large eigenvalue
- Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
- Rescale variables?
Maybe I need to rescale variables,but I do not know how to do it,or I should change a way. I am non math majors. Please give me some advices, thanks a lot.