I am trying to analyze data from a factorial design experiment with three factors: Nitrogen, Phosphorus and CO2, with 2 levels each. I ran a three-way ANOVA in R:
> fit = aov( Chl ~ (Nitrogen*Phosphorus*CO2), data=rr2)
> print(drop1(fit,~.,test="F"))
Single term deletions
Model:
Chl ~ (Nitrogen * Phosphorus * CO2)
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 21.168 -203.21
Nitrogen 1 0.88545 22.053 -200.13 4.8523 0.02959 *
Phosphorus 1 0.07483 21.242 -204.77 0.4101 0.52321
CO2 1 0.01695 21.185 -205.11 0.0929 0.76110
Nitrogen:Phosphorus 1 0.85426 22.022 -200.30 4.6814 0.03254 *
Nitrogen:CO2 1 0.02174 21.189 -205.08 0.1192 0.73057
Phosphorus:CO2 1 0.00376 21.171 -205.19 0.0206 0.88608
Nitrogen:Phosphorus:CO2 1 0.20799 21.376 -204.00 1.1398 0.28791
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Since CO2 appears to have no effect, does it make sense to simplify the model like so, discarding the CO2 variable:
> fit = aov( Chl ~ (Nitrogen*Phosphorus), data=rr2)
> print(drop1(fit,~.,test="F"))
Single term deletions
Model:
Chl ~ (Nitrogen * Phosphorus)
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 23.289 -199.37
Nitrogen 1 2.11369 25.402 -190.59 10.8912 0.0012725 **
Phosphorus 1 0.20896 23.498 -200.26 1.0767 0.3015159
Nitrogen:Phosphorus 1 3.11497 26.404 -185.80 16.0506 0.0001074 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1