I have a data set with 5 independent variables. Is it possible to do a regression analysis without the presence of a dependent variable?
> names(bb)
[1] "BB1" "BB2" "BB3" "BB4" "BB5"
> x1<-bb$BB1
> x2<-bb$BB2
> x3<-bb$BB3
> x4<-bb$BB4
> x5<-bb$BB5
> OLS<-lm(y~x1+x2+x3+x4+x5, data = bb)
> summary(OLS)
Call:
lm(formula = y ~ x1 + x2 + x3 + x4 + x5, data = bb)
Residuals:
Min 1Q Median 3Q Max
-168.79 -74.18 -19.31 53.45 222.43
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 151.2558 69.6001 2.173 0.0325 *
x1 0.3859 1.4976 0.258 0.7972
x2 0.2746 0.1940 1.416 0.1605
x3 -2.6899 2.5056 -1.074 0.2861
x4 -2.2511 1.1785 -1.910 0.0595 .
x5 -0.3369 1.6231 -0.208 0.8360
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 95.18 on 85 degrees of freedom
Multiple R-squared: 0.09186, Adjusted R-squared: 0.03844
F-statistic: 1.72 on 5 and 85 DF, p-value: 0.1388