I have some measurements (concentration) made in 4 groups (W, X, Y, Z) and time is my covariate. I make a linear model:
fit <- lm(concentration~group*year, data=data)
The results are as follows: ANOVA table:
anova(fit)
Analysis of Variance Table
Response: concentration
Df Sum Sq Mean Sq F value Pr(>F)
group 3 3600.7 1200.22 32.6132 4.081e-10 *** #!
year 1 559.7 559.71 15.2087 0.0004311 ***
group:year 3 97.3 32.42 0.8809 0.4607155
Residuals 34 1251.3 36.80
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
and pairwise comparison:
summary(fit)
Call:
lm(formula = concentration ~ group * year, data = data)
Residuals:
Min 1Q Median 3Q Max
-8.818 -4.019 -0.276 4.181 13.097
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -433.0108 828.4293 -0.523 0.605
groupX -1574.0090 1170.3741 -1.345 0.188 #!
groupY -1666.3673 1170.3741 -1.424 0.164 #!
groupZ -1201.2766 1170.3891 -1.026 0.312 #!
year 0.2418 0.4128 0.586 0.562
groupX:year 0.7937 0.5831 1.361 0.182
groupY:year 0.8409 0.5831 1.442 0.158
groupZ:year 0.6104 0.5831 1.047 0.303
Residual standard error: 6.066 on 34 degrees of freedom
Multiple R-squared: 0.7729, Adjusted R-squared: 0.7261
F-statistic: 16.53 on 7 and 34 DF, p-value: 2.852e-09
Now I have a problem in the interpretation of this data. As far as I understand, since the interaction in the ANOVA table is nonsignificant, I can check the group effect, and it is significant. This means that the intercept in different groups should be [significantly] different. But when I look to the summary table, there is no significant difference, at least – between group W and others (groupX, groupY and groupZ are nonsignificant). If I change the compared group from W to X or Y or Z the comparison results are still nonsignificant:
data2 <- data
data2$group[data2$group=="X"] <-"A"
fit <- lm(concentration~group*year, data=data2)
summary(fit)
Call:
lm(formula = concentration ~ group * year, data = data2)
Residuals:
Min 1Q Median 3Q Max
-8.818 -4.019 -0.276 4.181 13.097
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.007e+03 8.267e+02 -2.428 0.0206 *
groupW 1.574e+03 1.170e+03 1.345 0.1876 #!
groupY -9.236e+01 1.169e+03 -0.079 0.9375 #!
groupZ 3.727e+02 1.169e+03 0.319 0.7518 #!
year 1.035e+00 4.119e-01 2.514 0.0168 *
groupW:year -7.937e-01 5.831e-01 -1.361 0.1824
groupY:year 4.717e-02 5.825e-01 0.081 0.9359
groupZ:year -1.834e-01 5.825e-01 -0.315 0.7549
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.066 on 34 degrees of freedom
Multiple R-squared: 0.7729, Adjusted R-squared: 0.7261
F-statistic: 16.53 on 7 and 34 DF, p-value: 2.852e-09
data2 <- data
data2$group[data2$group=="Y"] <-"A"
fit <- lm(concentration~group*year, data=data2)
summary(fit)
Call:
lm(formula = concentration ~ group * year, data = data2)
Residuals:
Min 1Q Median 3Q Max
-8.818 -4.019 -0.276 4.181 13.097
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.099e+03 8.267e+02 -2.539 0.0158 *
groupW 1.666e+03 1.170e+03 1.424 0.1636 #!
groupX 9.236e+01 1.169e+03 0.079 0.9375 #!
groupZ 4.651e+02 1.169e+03 0.398 0.6933 #!
year 1.083e+00 4.119e-01 2.628 0.0128 *
groupW:year -8.409e-01 5.831e-01 -1.442 0.1584
groupX:year -4.717e-02 5.825e-01 -0.081 0.9359
groupZ:year -2.305e-01 5.825e-01 -0.396 0.6948
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.066 on 34 degrees of freedom
Multiple R-squared: 0.7729, Adjusted R-squared: 0.7261
F-statistic: 16.53 on 7 and 34 DF, p-value: 2.852e-09
data2 <- data
data2$group[data2$group=="Z"] <-"A"
fit <- lm(concentration~group*year, data=data2)
summary(fit)
Call:
lm(formula = concentration ~ group * year, data = data2)
Residuals:
Min 1Q Median 3Q Max
-8.818 -4.019 -0.276 4.181 13.097
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -433.0108 828.4293 -0.523 0.605
groupX -1574.0090 1170.3741 -1.345 0.188 #!
groupY -1666.3673 1170.3741 -1.424 0.164 #!
groupZ -1201.2766 1170.3891 -1.026 0.312 #!
year 0.2418 0.4128 0.586 0.562
groupX:year 0.7937 0.5831 1.361 0.182
groupY:year 0.8409 0.5831 1.442 0.158
groupZ:year 0.6104 0.5831 1.047 0.303
Residual standard error: 6.066 on 34 degrees of freedom
Multiple R-squared: 0.7729, Adjusted R-squared: 0.7261
F-statistic: 16.53 on 7 and 34 DF, p-value: 2.852e-09
How is it possible that there are no significant difference between any two groups when there is a significant group effect? Apparently my interpretation that significant group effect means that at least one group differ significantly from other in the intercept value is incorrect. So what is the correct interpretation of the significant group effect?