The help page for MICE
defines the function as:
mice(data, m = 5, method = vector("character", length = ncol(data)),
predictorMatrix = (1 - diag(1, ncol(data))),
visitSequence = (1:ncol(data))[apply(is.na(data), 2, any)],
form = vector("character", length = ncol(data)),
post = vector("character", length = ncol(data)), defaultMethod = c("pmm",
"logreg", "polyreg", "polr"), maxit = 5, diagnostics = TRUE,
printFlag = TRUE, seed = NA, imputationMethod = NULL,
defaultImputationMethod = NULL, data.init = NULL, ...)
Those are a lot of parameters. How does one decide which parameters to specify and which ones to leave as default?
I'm especially interested in the number of multiple imputations, m
and the maximum iterations, maxit
. How do these parameters affect accuracy?
In other words, when (how?) - whilst using these parameters - can I really say that a sort of convergence has been reached?