I have a binary response variable and a categorical predictor variable. If I test for associations between the 2 variables using chi-square test , it turns out to be significant. However, if I do a logistic regression with the same set of variables, the predictor is not significant. Why does this happen?
table(Data1$pred,Data1$target)
0 1
Level1 1 0
Level2 4 0
Level3 98 1
Level4 2056 22
Level5 1 0
Level6 2 0
Level7 311 0
Level8 6 1
Level9 131 7
Level10 49 2
chisq.test(table(Data1$pred,Data1$target))
Pearson's Chi-squared test
data: tabletable(Data1$pred,Data1$target)
X-squared = 34.2614, df = 9, p-value = 8.037e-05
Logistic Regression on the same
logit.glm <- glm(as.factor(target) ~ pred,
data=Data1, family=binomial(link="logit")
summary(logit.glm)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.5553 -0.1459 -0.1459 -0.1459 3.0315
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.057e+01 1.773e+04 -0.001 0.999
Data1Level2 -6.313e-06 1.982e+04 0.000 1.000
Data1Level3 1.598e+01 1.773e+04 0.001 0.999
Data1Level4 1.603e+01 1.773e+04 0.001 0.999
Data1Level5 -6.312e-06 2.507e+04 0.000 1.000
Data1Level6 -6.312e-06 2.172e+04 0.000 1.000
Data1Level7 -6.312e-06 1.776e+04 0.000 1.000
Data1Level8 1.877e+01 1.773e+04 0.001 0.999
Data1Level9 1.764e+01 1.773e+04 0.001 0.999
Data1Level10 1.737e+01 1.773e+04 0.001 0.999
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 356.09 on 2691 degrees of freedom
Residual deviance: 333.06 on 2682 degrees of freedom
AIC: 353.06
Number of Fisher Scoring iterations: 19