I try to learn which transformations are better for model and I am trying to compare models that I build. The first model is
Call:
lm(formula = log(medv) ~ log(crim) + zn + log(indus) + chas +
log(nox) + log(rm) + log(age) + log(dis) + log(rad) + log(tax) +
log(ptratio) + log(black) + log(lstat), data = Boston)
Residuals:
Min 1Q Median 3Q Max
-0.95001 -0.10118 -0.00198 0.10961 0.82680
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.3504375 0.4336744 12.337 < 2e-16 ***
log(crim) -0.0314413 0.0111790 -2.813 0.005112 **
zn -0.0011481 0.0005828 -1.970 0.049410 *
log(indus) 0.0037637 0.0224508 0.168 0.866935
chas 0.1011952 0.0362298 2.793 0.005423 **
log(nox) -0.3659159 0.1074552 -3.405 0.000715 ***
log(rm) 0.3843709 0.1094673 3.511 0.000487 ***
log(age) 0.0410625 0.0223547 1.837 0.066833 .
log(dis) -0.1438053 0.0356083 -4.039 6.24e-05 ***
log(rad) 0.0949062 0.0220954 4.295 2.10e-05 ***
log(tax) -0.1759806 0.0477668 -3.684 0.000255 ***
log(ptratio) -0.5895440 0.0912645 -6.460 2.52e-10 ***
log(black) 0.0532854 0.0126549 4.211 3.03e-05 ***
log(lstat) -0.4186032 0.0258019 -16.224 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.1988 on 492 degrees of freedom
Multiple R-squared: 0.7697, Adjusted R-squared: 0.7636
F-statistic: 126.5 on 13 and 492 DF, p-value: < 2.2e-16
Second Model is
Call:
lm(formula = medv ~ log(crim) + zn + log(indus) + chas + log(nox) +
log(rm) + log(age) + log(dis) + log(rad) + log(tax) + log(ptratio) +
log(black) + log(lstat), data = Boston)
Residuals:
Min 1Q Median 3Q Max
-13.3551 -2.5733 -0.2924 2.0704 22.8158
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.449e+01 9.307e+00 8.004 8.74e-15 ***
log(crim) 7.002e-02 2.399e-01 0.292 0.770524
zn -1.257e-04 1.251e-02 -0.010 0.991983
log(indus) -8.557e-01 4.818e-01 -1.776 0.076366 .
chas 2.480e+00 7.775e-01 3.190 0.001514 **
log(nox) -1.160e+01 2.306e+00 -5.030 6.90e-07 ***
log(rm) 1.374e+01 2.349e+00 5.850 8.98e-09 ***
log(age) 8.034e-01 4.798e-01 1.675 0.094658 .
log(dis) -6.327e+00 7.642e-01 -8.280 1.17e-15 ***
log(rad) 1.972e+00 4.742e-01 4.158 3.78e-05 ***
log(tax) -4.277e+00 1.025e+00 -4.172 3.57e-05 ***
log(ptratio) -1.357e+01 1.959e+00 -6.927 1.35e-11 ***
log(black) 1.005e+00 2.716e-01 3.701 0.000239 ***
log(lstat) -9.654e+00 5.537e-01 -17.433 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.266 on 492 degrees of freedom
Multiple R-squared: 0.7904, Adjusted R-squared: 0.7849
F-statistic: 142.7 on 13 and 492 DF, p-value: < 2.2e-16
The difference between models is only log transformation of dependent variable. When I compare I saw that residual standard error is very high in the second model but R-squared is also high in the second model. I did not understand which model is better. The high reduction in the standard error is due to log transformation of dependent variable or not?