I'm using auto.arima
function to analyze my data. And here's what I get:
Series: data
ARIMA(2,1,2) with drift
Coefficients:
ar1 ar2 ma1 ma2 drift
1.6679 -0.8005 -1.2424 0.3125 0.4225
s.e. 0.1007 0.1107 0.1396 0.1413 0.1895
sigma^2 estimated as 17.34: log likelihood=-438.37
AIC=888.73 AICc=889.3 BIC=906.99
I'm trying to perform a heteroscedastic test to my residual model using bptest from lmtest
package with this code:
> bp<-bptest(lm(residuals(model)~1))
> bp
studentized Breusch-Pagan test
data: lm(residuals(model) ~ 1)
BP = 1.231e-30, df = 0, p-value < 2.2e-16
Am I doing bptest
right? When I analyze another data with this code I always get the same df
and p-value
.
edit: here is the data :
World_Oil_Prices
[1-10] [11-20] [21-30] [31-40] [41-50] [51-60] [61-70] [71-80] [81-90] [91-100] [101-110] [111-120] [121-130] [131-140] [141-150] [151-156]
17.79 22.25 18.73 12.72 16.12 27.49 25.95 18.69 28.28 28.59 37.63 48.75 59.67 53.53 75.91 131.22
17.69 23.51 20.12 12.49 16.24 23.45 27.24 18.52 27.53 29.68 35.54 46.00 54.17 57.22 81.27 121.87
19.46 23.29 19.16 13.80 18.75 27.23 25.02 19.15 24.79 26.88 37.93 43.67 56.63 50.14 90.54 96.85
20.78 20.54 17.24 13.26 20.21 29.62 25.66 19.98 27.89 29.01 42.08 52.55 66.85 54.46 89.76 69.16
19.12 19.42 15.07 11.88 22.37 28.16 27.55 23.64 30.77 29.12 41.65 52.24 63.49 57.78 85.53 46.03
18.56 17.98 14.18 10.41 22.19 29.41 26.97 25.43 32.88 29.95 46.87 58.74 62.26 63.25 93.51 38.60
19.56 19.47 13.24 11.32 24.22 32.08 24.80 25.69 30.36 31.40 42.23 58.20 68.08 66.75 99.32
20.19 18.02 13.39 10.75 25.01 31.40 25.81 24.49 25.49 31.32 39.09 53.32 66.45 68.29 111.03
22.14 18.45 13.97 12.86 25.21 32.33 25.03 25.75 26.06 33.67 42.76 49.41 56.38 73.69 123.35
23.43 18.79 12.48 15.73 27.15 25.28 20.73 26.78 27.91 33.71 44.35 51.66 53.58 67.10 128.33
And this is the R code:
library(forecast)
model<-auto.arima(data)
model
library(lmtest)
bp<-bptest(lm(residuals(model)~1))
bp