I have a set of data, let's say average weight of employees, captured every month over a period of 5 years (2010 - 2014). I cannot find a seasonality trend in the data over these years. Also, I have found that it is not dependent on any other factors.
I am trying to forecast values for 2015 to get a general sense of this data as it is an important metric in the operations of my business.
I have tried ARIMA, R-regression, Exponential smoothing, Excel forecast to find any seasonality whatsoever. However, my efforts are yet to materialize.
My question is: How do I forecast a variable that has no seasonality?
I have attached my data herewith.
Graphs
Yearly Values for years 2010 - 2014
Value Cumulative over 2010 - 2014
All Values from 2010 - 2014
Auto ARIMA in R
# Map 1-based optional input ports to variables
dataset1 <- maml.mapInputPort(1) # class: data.frame
library(forecast)
dates <- dataset1$Date
values <- dataset1$Weight
dates <- as.Date(dates, format = '%m/%d/%Y')
values <- as.numeric(values)
train_ts <- ts(values, frequency=12)
fit1 <- auto.arima(train_ts)
train_model <- forecast(fit1, h = 12)
plot(train_model)
# produce forecasting
train_pred <- round(train_model$mean,2)
data.forecast <- as.data.frame(t(train_pred))
#colnames(dataset1.forecast) <- paste("Forecast", 1:data$horizon, sep="")
# Select data.frame to be sent to the output Dataset port
maml.mapOutputPort("data.forecast");
Forecasted Value with Auto ARIMA
Date Weight
01-01-15 11.77
01-02-15 11.76
01-03-15 11.77
01-04-15 11.76
01-05-15 11.77
01-06-15 11.77
01-07-15 11.76
01-08-15 11.77
01-09-15 11.76
01-10-15 11.77
01-11-15 11.77
01-12-15 11.76
Data
Date Weight Cumulative Weight
01-01-10 11.8800 11.8800
01-02-10 10.4000 22.2800
01-03-10 6.9500 29.2300
01-04-10 15.5000 44.7300
01-05-10 17.0400 61.7700
01-06-10 10.4700 72.2400
01-07-10 12.1400 84.3800
01-08-10 2.5800 86.9600
01-09-10 12.6300 99.5900
01-10-10 11.6800 111.2700
01-11-10 9.0700 120.3400
01-12-10 10.8900 131.2300
01-01-11 1.7500 132.9800
01-02-11 -1.7700 131.2100
01-03-11 5.9300 137.1400
01-04-11 -4.9200 132.2200
01-05-11 4.3900 136.6100
01-06-11 1.5100 138.1200
01-07-11 1.2200 139.3400
01-08-11 10.2900 149.6300
01-09-11 13.0600 162.6900
01-10-11 10.1400 172.8300
01-11-11 8.5250 181.3550
01-12-11 6.4350 187.7900
01-01-12 -5.5100 182.2800
01-02-12 -4.3000 177.9800
01-03-12 2.3200 180.3000
01-04-12 4.0700 184.3700
01-05-12 12.2700 196.6400
01-06-12 14.7400 211.3800
01-07-12 8.4600 219.8400
01-08-12 11.6300 231.4700
01-09-12 -0.1500 231.3200
01-10-12 2.5200 233.8400
01-11-12 6.7400 240.5800
01-12-12 35.6300 276.2100
01-01-13 26.4000 302.6100
01-02-13 26.1300 328.7400
01-03-13 16.2100 344.9500
01-04-13 56.0800 401.0300
01-05-13 32.2300 433.2600
01-06-13 17.5100 450.7700
01-07-13 3.6700 454.4400
01-08-13 7.7700 462.2100
01-09-13 -14.2800 447.9300
01-10-13 1.0800 449.0100
01-11-13 9.4000 458.4100
01-12-13 7.3400 465.7500
01-01-14 6.1400 471.8900
01-02-14 3.8200 475.7100
01-03-14 16.7600 492.4700
01-04-14 0.4900 492.9600
01-05-14 17.9800 510.9400
01-06-14 14.8000 525.7400
01-07-14 12.6400 538.3800
01-08-14 5.7300 544.1100
01-09-14 -2.0900 542.0200
01-10-14 9.1300 551.1500
01-11-14 12.5100 563.6600
01-12-14 -1.3900 562.2700
Actual Values for 2015
Date Weight
01-01-15 -18.43
01-02-15 13.94
01-03-15 26.14
01-04-15 24.36
01-05-15 18.37