I am using Firth logistic regression to analyze data with a rare event. In my model I have 4 continuous variables and 1 dichotomous variable. This is my code:
library(logistf)
full1F <- logistf(Stroke~log(v1)+sqrt(v2)+log(v3)+log(v4)+dich_var)
summary(full1F)
exp(cbind(OR=coef(full1F),confint(full1F)))
What statistic should I report to describe model fit (i.e. akin to AIC for GLM models)?
How should I interpret the p-values (i.e.
sqrt(v2)
is significant based on the CI, but the p-value is 1.0)?Why is the confidence interval for the dichotomous variable so wide? This is the output:
OR L95% U95% (Intercept) 28.67 5.06 162.5 log(v1) 0.88 0.80 0.97 sqrt(v2) 1.51 1.37 1.69 log(v3) 1.36 1.13 1.64 log(v4) 0.62 0.50 0.76 dich_var 62.76 0.09 167702.4
Full output from logist and extractAIC:
Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood
coef se(coef) lower 0.95 upper 0.95 Chisq p
(Intercept) 4.12807056 2.7584264 2.6061200 5.671118391 1.479713 0.2238194
log(v1) -0.08109114 0.1625829 -0.1744268 0.006705001 0.000000 1.0000000
sqrt(v2) 0.39223967 0.1831892 0.2963022 0.501110156 0.000000 1.0000000
log(v3) 0.31123164 0.3336092 0.1309848 0.502245304 0.000000 1.0000000
log(v4) -0.53354748 0.3718985 -0.7448874 -0.331731496 0.000000 1.0000000
dich_varYes 4.14502663 3.9598211 -3.1206739 12.035651631 Inf 0.0000000
Likelihood ratio test=5.612847 on 5 df, p=0.3457304, n=1714
Wald test = 10.01195 on 5 df, p = 0.07489748
Covariance-Matrix:
[,1] [,2] [,3] [,4] [,5]
[1,] 7.60891623 0.355883900 -0.2358586207 0.107347858 -0.9014000169
[2,] 0.35588390 0.026433207 -0.0139567792 0.006657177 -0.0352398354
[3,] -0.23585862 -0.013956779 0.0335582829 -0.012769583 0.0002785645
[4,] 0.10734786 0.006657177 -0.0127695828 0.111295107 -0.0034625698
[5,] -0.90140002 -0.035239835 0.0002785645 -0.003462570 0.1383084900
[6,] 0.07854902 0.004844901 -0.0121205581 -0.007438953 -0.0037122993
[,6]
[1,] 0.078549017
[2,] 0.004844901
[3,] -0.012120558
[4,] -0.007438953
[5,] -0.003712299
[6,] 15.680183083
extractAIC(full1F)
[1] 5.000000 4.387153