I have age as a covariate in my material. A continuous variable. The age varies between 18-70 years.
I'm into a logistic regression and do not really know how to treat the variable. As a linear effect or as a polynomial?
gender passinggrade age prog
1 man FALSE 69 FRIST
2 man NA 70 FRIST
3 woman NA 65 FRIST
4 woman TRUE 68 FRIST
5 woman NA 65 NMFIK
6 man FALSE 70 FRIST
my model;
mod.fit<-glm(passinggrade ~prog+gender+age,family=binomial,data=both)
summary(mod.fit)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.42653 0.28096 8.636 < 2e-16 ***
progLARAA 0.44931 0.25643 1.752 0.079746 .
progNASTK -0.15524 0.26472 -0.586 0.557597
progNBFFK 0.12091 0.65460 0.185 0.853462
progNBIBK -0.18850 0.37656 -0.501 0.616659
progNDATK -2.84617 0.73077 -3.895 9.83e-05 ***
progNFYSK 0.64391 0.19634 3.280 0.001040 **
progNMATK 0.18424 0.16451 1.120 0.262733
progNMETK 0.22433 0.29086 0.771 0.440554
progNMFIK 0.38877 0.42152 0.922 0.356373
progNSFYY 0.97205 0.29320 3.315 0.000915 ***
progSMEKK -0.58043 0.18185 -3.192 0.001414 **
genderman -0.05623 0.10477 -0.537 0.591496
age -0.11780 0.01028 -11.462 < 2e-16 ***
how would you treat the variable age? and how should I interpret the results for age?