I used logistic regression and found that my model fits well:
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6434 -1.4623 0.8704 0.9013 1.0066
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.41595 0.02115 19.67 <2e-16 ***
init_att_cnt 0.02115 0.00146 14.48 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 154956 on 122239 degrees of freedom
Residual deviance: 154746 on 122238 degrees of freedom
AIC: 154750
The chi-squared test is hightly statisticaly significant: p = 9.642755e-48
. I decided to check the Nagelkerke $R^2$ statistic,
R2 <- R2/(1-exp((-mylogit$null.deviance)/n))
but it was $R^2 = 0.001350927$. This is unbelievable, why is $R^2$ so small, if my model fits well?