I have extremely large number of observations (8524152) of soil moisture, precipitation, evapotranspiration, delta precipitation, and delta evapotranspiration. I ran a multiple linear regression model and my result looks like
Call:
lm(formula = SMDI ~ ET + delta_ET + PRCP + delta_PRCP, data = regData)
Residuals:
Min vvvv 1Q Median 3Q Max
-10414.0 67.1 133.9 192.2 8737.3
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.508196 0.797889 -109.67 <2e-16 ***
ET 0.083853 0.001225 68.46 <2e-16 ***
delta_ET 0.267973 0.001270 211.04 <2e-16 ***
PRCP 0.237649 0.003255 73.02 <2e-16 ***
delta_PRCP 0.257458 0.003250 79.23 <2e-16 ***
Residual standard error: 1705 on 8524147 degrees of freedom
Multiple R-squared: 0.4424, Adjusted R-squared: 0.4424
F-statistic: 1.691e+06 on 4 and 8524147 DF, p-value: < 2.2e-16
The t-stat for evapotranspiration (ET), Precipitation (PRCP), delta_PRCP, and delta_ET are same, and the combined p-value is also extremely small. allmost < 2.2e-16. is this possible?
Juvin