We have 2 correlated variables and a lot of binomial factors (around 200), here illustrated with just $f1$ and $f2$:
x <- rnorm(100)
y <- rnorm(100)
f1 <- rbinom(100, 1, 0.5)
f2 <- rbinom(100, 1, 0.5)
Which gives four possible groups: A $(f1=1,f2=1)$, B $(f1=0,f2=1)$, C $(f1=1,f2=0)$, and D $(f1=0,f2=0)$.
We then run the model
> glm(y ~ x * f1 + x * f2)
Call:
glm(formula = y ~ x * f1 + x * f2)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.72028 -0.58501 0.03167 0.60097 1.86332
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.03188 0.17388 -0.183 0.8549
x 0.08105 0.20540 0.395 0.6940
f1 0.26823 0.19309 1.389 0.1681
f2 -0.34568 0.19488 -1.774 0.0793 .
x:f1 0.10301 0.20183 0.510 0.6110
x:f2 -0.25875 0.20828 -1.242 0.2172
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.8906953)
Null deviance: 88.754 on 99 degrees of freedom
Residual deviance: 83.725 on 94 degrees of freedom
AIC: 280.02
Number of Fisher Scoring iterations: 2
We can simplify this output and make a regression ($y = a + b \times x$) for each group by doing:
$a_A = (-0.03188) + (0.26823) + (-0.34568)=-0.10932806$ $b_A = (0.08105) + (0.10301) + (-0.25875)=-0.07468630$
$a_B = (-0.03188) + (-0.34568)=-0.37755949$ $b_B = (0.08105) + (-0.25875)=-0.17769345$
And the same for the C and D groups. My question is: How do I calculate a standard deviation or confidence intervals for the individual group slopes. Is it additive like the estimates or is it the means or something else? Thank you for any help.