1

I'm fitting a linear model to a dataset. I've reduced the model from 7 variables to 3 and as part of that I've transformed one of my variables (wt) in order to get a better fit.

For my final model, the summary is:

summary(lm22)
Call:
lm(formula = mpg ~ poly(wt, 2) + year + origin, data = redautoi)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.4126 -1.5029 -0.0003  1.5994  7.6032 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)   -33.94088    2.84630 -11.925  < 2e-16 ***
poly(wt, 2)1 -100.09492    3.14080 -31.869  < 2e-16 ***
poly(wt, 2)2   27.18431    2.61085  10.412  < 2e-16 ***
year            0.74125    0.03736  19.839  < 2e-16 ***
origin          0.55447    0.20314   2.729  0.00665 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.477 on 367 degrees of freedom
Multiple R-squared:  0.8842,    Adjusted R-squared:  0.883 
F-statistic: 700.7 on 4 and 367 DF,  p-value: < 2.2e-16

My question is how do I interpret these estimates? Especially poly(wt,2)1 and poly(wt,2)2

Substituting values from the original dataset using the above estimates gives a wild fitted value. (but using fitted(lm22) appears to give reasonable estimates)

0 Answers0