I have two models:
frm.mE <- glm(frm ~ age + education + socialrole + countedmembers +
offset(log(words)), family=quasipoisson, data=daten.alle.kom)
frm.oE <- glm(frm ~ age + socialrole + countedmembers +
offset(log(words)), family=quasipoisson, data=daten.alle.kom)
now I want to know which model is the better one, but because of quasipoisson, AIC don't work
summary(frm.mE)
Call:
glm(formula = frm ~ age + education + socialrole + countedmembers +
offset(log(words)), family = quasipoisson, data = daten.alle.kom)
Deviance Residuals:
Min 1Q Median 3Q Max
-6.7040 -1.6727 -0.2329 1.0003 7.4897
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.95362 0.21432 -18.448 < 2e-16 ***
age 0.01293 0.07041 0.184 0.85454
education1 0.11532 0.11647 0.990 0.32367
socialrole1 -0.28367 0.23685 -1.198 0.23287
socialrole2 -0.80474 0.29054 -2.770 0.00629 **
countedmembers -0.03716 0.06120 -0.607 0.54461
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for quasipoisson family taken to be 5.792638)
Null deviance: 909.51 on 160 degrees of freedom
Residual deviance: 841.35 on 155 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 5
and the second model:
Call:
glm(formula = frm ~ age + socialrole + countedmembers + offset(log(words)),
family = quasipoisson, data = daten.alle.kom)
Deviance Residuals:
Min 1Q Median 3Q Max
-6.4844 -1.6613 -0.3583 1.1036 7.1557
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.89079 0.20350 -19.119 < 2e-16 ***
age 0.00540 0.06966 0.078 0.93832
socialrole1 -0.33991 0.22947 -1.481 0.14054
socialrole2 -0.75470 0.28553 -2.643 0.00905 **
countedmembers -0.02634 0.05996 -0.439 0.66104
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for quasipoisson family taken to be 5.761264)
Null deviance: 909.51 on 160 degrees of freedom
Residual deviance: 847.08 on 156 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 5
is there another way to compare them? or to know if I should keep the variable "education"? thanks for any help!
I tried a F test, but not sure if it makes sense:
anova(frm.mE, frm.oE, test="F")
Analysis of Deviance Table
Model 1: frm ~ age + education + socialrole + countedmembers + offset(log(words))
Model 2: frm ~ age + socialrole + countedmembers + offset(log(words))
Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 155 841.35
2 156 847.08 -1 -5.7368 0.9904 0.3212
but I'm not sure how to understand it, does it mean that I should keep "education" because model 2 has a too big p-value?