Possible Duplicate:
Logistic Regression in R (Odds Ratio)
I need to do a logistic regression in R. My response variable is surv=0
; surv=1
and I have about 18 predictor variables.
After reading my model, I got the table of Coefficients below and I need to go through some steps, which I am not familiar with, until I get to the odds ratios.
This is my first time to do a logistic regression in R and your help would be appreciated.
Call:
glm(formula = surv ~ as.factor(tdate) + as.factor(line) + as.factor(wt) +
as.factor(crump) + as.factor(pind) + as.factor(pcscore) +
as.factor(ptem) + as.factor(pshiv) + as.factor(pincis) +
as.factor(presp) + as.factor(pmtone) + as.factor(pscolor) +
as.factor(ppscore) + as.factor(pmstain) + as.factor(pbse) +
as.factor(psex) + as.factor(pgf), family = binomial(link = "logit"),
data = ap)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9772 -0.5896 -0.4419 -0.3154 2.8264
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.59796 0.27024 -2.213 0.026918 *
as.factor(tdate)2009-09-08 0.43918 0.19876 2.210 0.027130 *
as.factor(tdate)2009-09-11 0.27613 0.20289 1.361 0.173514
as.factor(tdate)2009-09-15 0.58733 0.19232 3.054 0.002259 **
as.factor(tdate)2009-09-18 0.52823 0.20605 2.564 0.010360 *
as.factor(tdate)2009-09-22 0.45661 0.19929 2.291 0.021954 *
as.factor(tdate)2009-09-25 -0.09189 0.21740 -0.423 0.672526
as.factor(tdate)2009-09-29 -0.15696 0.28369 -0.553 0.580076
as.factor(tdate)2010-01-26 1.39260 0.21049 6.616 3.69e-11 ***
as.factor(tdate)2010-01-29 1.67827 0.21099 7.954 1.80e-15 ***
as.factor(tdate)2010-02-02 1.35442 0.21292 6.361 2.00e-10 ***
as.factor(tdate)2010-02-05 1.36856 0.21439 6.383 1.73e-10 ***
as.factor(tdate)2010-02-09 1.18159 0.21951 5.383 7.33e-08 ***
as.factor(tdate)2010-02-12 1.40457 0.22001 6.384 1.73e-10 ***
as.factor(tdate)2010-02-16 1.01063 0.21783 4.639 3.49e-06 ***
as.factor(tdate)2010-02-19 1.54992 0.21535 7.197 6.14e-13 ***
as.factor(tdate)2010-02-23 0.85695 0.33968 2.523 0.011641 *
as.factor(line)2 -0.26311 0.07257 -3.625 0.000288 ***
as.factor(line)5 0.06766 0.11162 0.606 0.544387
as.factor(line)6 -0.30409 0.12130 -2.507 0.012176 *
as.factor(wt)2 -0.33904 0.10708 -3.166 0.001544 **
as.factor(wt)3 -0.28976 0.13217 -2.192 0.028359 *
as.factor(wt)4 -0.50470 0.16264 -3.103 0.001915 **
as.factor(wt)5 -0.74870 0.20067 -3.731 0.000191 ***
as.factor(crump)2 0.07537 0.10751 0.701 0.483280
as.factor(crump)3 -0.14050 0.13217 -1.063 0.287768
as.factor(crump)4 -0.20131 0.16689 -1.206 0.227724
as.factor(crump)5 -0.23963 0.20778 -1.153 0.248803
as.factor(pind)2 -0.29893 0.10752 -2.780 0.005434 **
as.factor(pind)3 -0.40828 0.12436 -3.283 0.001027 **
as.factor(pind)4 -0.73021 0.14947 -4.885 1.03e-06 ***
as.factor(pind)5 -0.68878 0.17650 -3.902 9.52e-05 ***
as.factor(pcscore)2 -0.52667 0.13606 -3.871 0.000108 ***
as.factor(ptem)2 -0.72600 0.08964 -8.099 5.52e-16 ***
as.factor(ptem)3 -0.79145 0.10503 -7.536 4.86e-14 ***
as.factor(ptem)4 -0.89956 0.10331 -8.707 < 2e-16 ***
as.factor(ptem)5 -0.90181 0.10721 -8.412 < 2e-16 ***
as.factor(pshiv)2 0.25236 0.07713 3.272 0.001068 **
as.factor(pincis)2 0.02327 0.07216 0.323 0.747041
as.factor(presp)2 0.43746 0.11598 3.772 0.000162 ***
as.factor(pmtone)2 0.34515 0.11178 3.088 0.002016 **
as.factor(pscolor)2 0.53469 0.26851 1.991 0.046443 *
as.factor(ppscore)2 0.25664 0.08751 2.933 0.003361 **
as.factor(pmstain)2 -0.48619 0.84408 -0.576 0.564611
as.factor(pbse)2 -0.28248 0.07335 -3.851 0.000117 ***
as.factor(psex)2 -0.18240 0.06385 -2.857 0.004280 **
as.factor(pgf)12 0.10329 0.14314 0.722 0.470554
as.factor(pgf)21 -0.06481 0.10772 -0.602 0.547388
as.factor(pgf)22 0.39584 0.12740 3.107 0.001890 **
as.factor(pgf)31 0.18820 0.10082 1.867 0.061936 .
as.factor(pgf)32 0.39662 0.13963 2.841 0.004504 **
as.factor(pgf)41 0.09178 0.10413 0.881 0.378106
as.factor(pgf)42 0.21056 0.14906 1.413 0.157787
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 7812.9 on 8714 degrees of freedom
Residual deviance: 6797.4 on 8662 degrees of freedom
(418 observations deleted due to missingness)
AIC: 6903.4
Number of Fisher Scoring iterations: 5