OK from your R code you are assuming an exponential distribution (constant hazard) for your baseline hazard. Your hazard functions are therefore:
$$
h\left(t \mid X_i\right) =
\begin{cases}
\exp{\left(\alpha \beta_0\right)} & \text{if $X_i = 0$,} \\
\exp{\left(\gamma + \alpha\left(\beta_0+\beta_1+\beta_2 t\right)\right)} & \text{if $X_i = 1$.}
\end{cases}
$$
We then integrate these with respect to $t$ to get the cumulative hazard function:
$$
\begin{align}
\Lambda\left(t\mid X_i\right) &=
\begin{cases}
t \exp{\left(\alpha \beta_0\right)} & \text{if $X_i=0$,} \\
\int_0^t{\exp{\left(\gamma + \alpha\left(\beta_0+\beta_1+\beta_2 \tau\right)\right)} \,d\tau} & \text{if $X_i=1$.}
\end{cases} \\
&=
\begin{cases}
t \exp{\left(\alpha \beta_0\right)} & \text{if $X_i=0$,} \\
\exp{\left(\gamma + \alpha\left(\beta_0+\beta_1\right)\right)} \frac{1}{\alpha\beta_2} \left(\exp\left(\alpha\beta_2 t\right)-1\right) & \text{if $X_i=1$.}
\end{cases}
\end{align}
$$
These then give us the survival functions:
$$
\begin{align}
S\left(t\right) &= \exp{\left(-\Lambda\left(t\right)\right)} \\
&=
\begin{cases}
\exp{\left(-t \exp{\left(\alpha \beta_0\right)}\right)} & \text{if $X_i=0$,} \\
\exp{\left(-\exp{\left(\gamma + \alpha\left(\beta_0+\beta_1\right)\right)} \frac{1}{\alpha\beta_2} \left(\exp\left(\alpha\beta_2 t\right)-1\right)\right)} & \text{if $X_i=1$.}
\end{cases}
\end{align}
$$
You then generate by sampling $X_i$ and $U\sim\mathrm{Uniform\left(0,1\right)}$, substituting $U$ for $S\left(t\right)$ and rearranging the appropriate formula (based on $X_i$) to simulate $t$. This should be straightforward algebra you can then code up in R but please let me know by comment if you need any further help.