I am trying to find a model for the data below. I cannot decide whether the data is stationary or not. I do not want to take differences unnecessarily . I put results of the models below. I think ARIMA(0,1,3) is best model because AIC is lowest .What do you think?
[1] 3.78937537 2.15208174 -0.89160064 -1.73332645 -0.83482963 -0.41333144
[7] -1.63430676 -2.20777662 -1.35331581 -1.87955944 -1.49146551 2.49103865
[13] 4.58664031 3.98372753 3.49151073 2.80024199 1.98523634 2.00031840
[19] 1.74083830 -0.61761601 -2.88803617 -0.61886754 2.57402611 1.89283706
[25] -1.07544734 -4.26161203 -4.99017725 -2.51596702 -0.86119264 0.18702439
[31] 0.71532140 0.57777386 3.35966227 5.69130104 2.56164573 0.03846258
[37] 2.58144870 5.42012156 4.91012242 3.19472611 3.25517135 2.99351748
[43] 2.04710036 3.00828776 3.97207225 2.69966884 0.34465355 -1.43062776
[49] -0.86202757 2.17878741 4.93325672 3.31060112 0.35611519 0.46807870
[55] 1.66712453 1.51650578 1.67546667 1.55933575 0.63240519 1.28472844
[61] 1.38605161 0.18651983 0.79863043 2.87366933 4.44551597 4.30870925
[67] 3.60995558 3.35830065 1.53707953 0.08623542 0.97667994 -0.42280994
[73] -3.58389281 -3.55316081 -2.55628493 -3.04211427 -4.34371036 -4.72314008
[79] -2.32487771 -0.38168241 -0.89383414 -0.58963196 0.77158269 1.07205599
[85] 0.72950780 1.88525945 3.16151643 1.72134300 0.31586665 0.34106233
[91] -1.31065867 -2.64398487 -0.47188919 1.33507435 -0.55269545 -2.74748555
[97] -3.06504226 -3.07342362 -2.60963150 -0.96491699 -0.11554423 0.07801436
[103] 1.03953592 0.63529388 0.10310775 1.67245060 -0.08355651 -4.69707317
[109] -6.83755810 -5.48216561 -2.18589446 -1.34859551 -4.25464826 -4.44676908
[115] -0.72380753 0.10925230 -2.45630323 -4.70575810 -5.66265488 -5.50397286
[121] -5.64958955 -5.48545360 -2.79058869 -1.10528812 -3.35615732 -4.07432989
[127] -2.73350349 -2.21617434 -1.52494934 -1.58548803 -2.49378602 -1.69527130
[133] 0.74873392 0.90627894 0.30555834 2.92103049 5.83058432 6.36187212
[139] 5.22905256 4.00941490 3.03523663 1.93713509 1.67471721 1.32443755
[145] 2.32354111 5.63314456 6.62253314 3.30169519 -0.53170457 -2.45563036
[151] -3.33244848 -3.77673941 -3.54203732 -2.45898416 -0.16490056 3.04228090
[157] 3.92168880 1.24849940 -1.63284318 -1.07538492 1.65080853 1.66193852
[163] -0.42635583 -0.55887445 0.41598367 0.86267051 2.37980973 3.33955626
[169] 2.06034558 -0.23641280 -0.58777692 -0.15430770 -0.71699361 -0.97577373
[175] -1.32154837 -0.63551008 2.42331965 4.81896345 3.87979306 0.95525157
[181] -1.50232828 -3.57249760 -3.03952767 -0.28938790 1.58862094 2.81297712
[187] 3.46355587 3.35284181 3.33816359 2.39696945 0.09838492 -1.57887066
[193] -0.24116984 1.61287955 0.67580375 -0.41342769 -2.12526810 -3.82541756
[199] -1.64497472 -0.73523703
Model fitting
Call:
arima(x = data9, order = c(0, 1, 3))
Coefficients:
ma1 ma2 ma3
1.0905 -0.4871 -0.6763
s.e. 0.0750 0.1390 0.0760
sigma^2 estimated as 0.8477: log likelihood = -268.35, aic = 542.7
Call:
arima(x = data9, order = c(1, 0, 1))
Coefficients:
ar1 ma1 intercept
0.7070 1.0000 0.2048
s.e. 0.0497 0.0213 0.4983
sigma^2 estimated as 1.097: log likelihood = -296.55, aic = 599.11